Dongfang Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2252844/publications.pdf

Version: 2024-02-01

2258059 2272923 11 68 3 4 citations h-index g-index papers 11 11 11 58 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A 60–90-GHz CMOS Double-Neutralized LNA Technology With 6.3-dB NF and â⁻¹10dBm P⟨sub⟩â⁻¹1dB⟨/sub⟩. IEEE Microwave and Wireless Components Letters, 2019, 29, 489-491.	3.2	25
2	A 76–81-GHz Four-Channel Digitally Controlled CMOS Receiver for Automotive Radars. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 1091-1101.	5 . 4	12
3	A 76-81GHz FMCW Transceiver with 3-Transmit, 4-Receive Paths and 15dBm Output Power for Automotive Radars. , 2019, , .		11
4	A Digitally Controlled CMOS Receiver with $\hat{a}^{\prime}14$ dBm P _{1dB} for 77 GHz Automotive Radar. , 2019, , .		7
5	A 76–81 GHz CMOS down-conversion mixer for automotive radar. , 2018, , .		6
6	Design of high-linearity 75–90ÂGHz CMOS down-conversion mixer for automotive radar. Analog Integrated Circuits and Signal Processing, 2018, 97, 313-322.	1.4	6
7	A common-gate bootstrapped CMOS rectifier for VHF isolated DC–DC converter. Journal of Semiconductors, 2017, 38, 055002.	3.7	1
8	Design of ultra-wideband LNA with 3.6 $\hat{A}\pm$ 0.4 dB NF and 15.9 $\hat{A}\pm$ 1.1 dB gain. IEICE Electronics Express, 2018, 15, 20180403-20180403.	0.8	0
9	A Digitally Controlled CMOS Analog Baseband Circuit with Low Noise for 7681GHz Automotive Radar. , 2019, , .		0
10	Compact and highâ€inearity 77â€GHz CMOS receiver frontâ€end for automotive radar. IET Circuits, Devices and Systems, 2019, 13, 1203-1208.	1.4	0
11	A High Power-Added-Efficiency Ku-band Frequency Doubler in 28-nm CMOS for Automotive Radar. , 2021, , .		0