
Ines Diaz-Laviada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2252771/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Natural Chemotherapeutic Capsaicin Activates AMPK through LKB1 Kinase and TRPV1 Receptors in Prostate Cancer Cells. Pharmaceutics, 2022, 14, 329.	2.0	6
2	Increase in Ischemia-Modified Albumin and Pregnancy-Associated Plasma Protein-A in COVID-19 Patients. Journal of Clinical Medicine, 2021, 10, 5474.	1.0	5
3	Androgen Deprivation Induces Reprogramming of Prostate Cancer Cells to Stem-Like Cells. Cells, 2020, 9, 1441.	1.8	32
4	Dysregulated lipid metabolism in hepatocellular carcinoma cancer stem cells. Molecular Biology Reports, 2020, 47, 2635-2647.	1.0	18
5	The red pepper's spicy ingredient capsaicin activates AMPK in HepG2 cells through CaMKKβ. PLoS ONE, 2019, 14, e0211420.	1.1	13
6	Capsaicin Targets Lipogenesis in HepG2 Cells Through AMPK Activation, AKT Inhibition and PPARs Regulation. International Journal of Molecular Sciences, 2019, 20, 1660.	1.8	43
7	Combination of the natural product capsaicin and docetaxel synergistically kills human prostate cancer cells through the metabolic regulator AMP-activated kinase. Cancer Cell International, 2019, 19, 54.	1.8	58
8	Targeting <scp>AMP</scp> â€activated kinase impacts hepatocellular cancer stem cells induced by longâ€ŧerm treatment with sorafenib. Molecular Oncology, 2019, 13, 1311-1331.	2.1	31
9	Identification of a novel 2-oxindole fluorinated derivative as in vivo antitumor agent for prostate cancer acting via AMPK activation. Scientific Reports, 2018, 8, 4370.	1.6	17
10	Hierarchical Self-Assembly of BODIPY Dyes as a Tool to Improve the Antitumor Activity of Capsaicin in Prostate Cancer. Angewandte Chemie - International Edition, 2018, 57, 17235-17239.	7.2	39
11	Selbstanordnung von BODIPYâ€Farbstoffen als Werkzeug, um die Antitumoraktivitävon Capsaicin bei Prostatakrebs zu erhöhen. Angewandte Chemie, 2018, 130, 17481-17485.	1.6	6
12	Capsaicin exerts synergistic antitumor effect with sorafenib in hepatocellular carcinoma cells through AMPK activation. Oncotarget, 2017, 8, 87684-87698.	0.8	32
13	The pepper's natural ingredient capsaicin induces autophagy blockage in prostate cancer cells. Oncotarget, 2016, 7, 1569-1583.	0.8	54
14	The cannabinoid WIN 55,212-2 prevents neuroendocrine differentiation of LNCaP prostate cancer cells. Prostate Cancer and Prostatic Diseases, 2016, 19, 248-257.	2.0	30
15	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
16	Up-Regulated Expression of LAMP2 and Autophagy Activity during Neuroendocrine Differentiation of Prostate Cancer LNCaP Cells. PLoS ONE, 2016, 11, e0162977.	1.1	38
17	Novel Cancer Chemotherapy Hits by Molecular Topology: Dual Akt and Beta-Catenin Inhibitors. PLoS ONE, 2015, 10, e0124244.	1.1	14

18 The Potential Antitumor Effects of Capsaicin. , 2014, 68, 181-208.

INES DIAZ-LAVIADA

#	Article	IF	CITATIONS
19	Synthetic cannabinoid quinones: Preparation, inÂvitro antiproliferative effects and inÂvivo prostate antitumor activity. European Journal of Medicinal Chemistry, 2013, 70, 111-119.	2.6	42
20	Role of Capsaicin in Prostate Cancer. , 2013, , 47-65.		0
21	Involvement of PPAR \hat{I}^3 in the antitumoral action of cannabinoids on hepatocellular carcinoma. Cell Death and Disease, 2013, 4, e618-e618.	2.7	92
22	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
23	The endocannabinoid system in prostate cancer. Nature Reviews Urology, 2011, 8, 553-561.	1.9	26
24	The vanilloid capsaicin induces IL-6 secretion in prostate PC-3 cancer cells. Cytokine, 2011, 54, 330-337.	1.4	40
25	Anti-tumoral action of cannabinoids on hepatocellular carcinoma: role of AMPK-dependent activation of autophagy. Cell Death and Differentiation, 2011, 18, 1099-1111.	5.0	224
26	Preclinical evaluation of azathioprine plus buthionine sulfoximine in the treatment of human hepatocarcinoma and colon carcinoma. World Journal of Gastroenterology, 2011, 17, 3899.	1.4	30
27	Effect of capsaicin on prostate cancer cells. Future Oncology, 2010, 6, 1545-1550.	1.1	50
28	Capsaicin, a component of red peppers, induces expression of androgen receptor via PI3K and MAPK pathways in prostate LNCaP cells. FEBS Letters, 2009, 583, 141-147.	1.3	66
29	Inhibition of human tumour prostate PC-3 cell growth by cannabinoids R(+)-Methanandamide and JWH-015: Involvement of CB2. British Journal of Cancer, 2009, 101, 940-950.	2.9	84
30	The cannabinoid R(+)methanandamide induces IL-6 secretion by prostate cancer PC3 cells. Journal of Immunotoxicology, 2009, 6, 249-256.	0.9	18
31	Spisulosine (ES-285) induces prostate tumor PC-3 and LNCaP cell death by de novo synthesis of ceramide and PKCζ activation. European Journal of Pharmacology, 2008, 584, 237-245.	1.7	66
32	Induction of the endoplasmic reticulum stress protein GADD153/CHOP by capsaicin in prostate PC-3 cells: A microarray study. Biochemical and Biophysical Research Communications, 2008, 372, 785-791.	1.0	66
33	Apoptosis induced by capsaicin in prostate PC-3 cells involves ceramide accumulation, neutral sphingomyelinase, and JNK activation. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 2013-2024.	2.2	140
34	Induction of apoptosis in prostate tumor PC-3 cells and inhibition of xenograft prostate tumor growth by the vanilloid capsaicin. Apoptosis: an International Journal on Programmed Cell Death, 2006, 11, 89-99.	2.2	186
35	Expression of the transient receptor potential vanilloid 1 (TRPV1) in LNCaP and PC-3 prostate cancer cells and in human prostate tissue. European Journal of Pharmacology, 2005, 515, 20-27.	1.7	114
36	Vasoactive intestinal peptide (VIP) induces c-fos expression in LNCaP prostate cancer cells through a mechanism that involves Ca2+ signalling. Implications in angiogenesis and neuroendocrine differentiation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1744, 224-233.	1.9	37

INES DIAZ-LAVIADA

#	Article	IF	CITATIONS
37	Signal Transduction Activated by Cannabinoid Receptors. Mini-Reviews in Medicinal Chemistry, 2005, 5, 619-630.	1.1	47
38	Involvement of Cannabinoids in Cellular Proliferation. Mini-Reviews in Medicinal Chemistry, 2005, 5, 97-106.	1.1	14
39	Characterization of an anandamide degradation system in prostate epithelial PC-3 cells: synthesis of new transporter inhibitors as tools for this study. British Journal of Pharmacology, 2004, 141, 457-467.	2.7	37
40	Insulin receptor substrate-4 signaling in quiescent rat hepatocytes and in regenerating rat liver. Hepatology, 2003, 37, 1461-1469.	3.6	36
41	Activation of phosphoinositide 3-kinase/PKB pathway by CB1 and CB2 cannabinoid receptors expressed in prostate PC-3 cells. Involvement in Raf-1 stimulation and NGF induction. Cellular Signalling, 2003, 15, 851-859.	1.7	147
42	Expression of functionally active cannabinoid receptor CB1in the human prostate gland. Prostate, 2003, 54, 95-102.	1.2	24
43	Enhancement of androgen receptor expression induced by (R)-methanandamide in prostate LNCaP cells. FEBS Letters, 2003, 555, 561-566.	1.3	50
44	Evidence for the Lack of Involvement of Sphingomyelin Hydrolysis in the Tumor Necrosis Factor-Induced Secretion of Nerve Growth Factor in Primary Astrocyte Cultures. Journal of Neurochemistry, 2002, 71, 498-505.	2.1	10
45	î"9 -Tetrahydrocannabinol increases nerve growth factor production by prostate PC-3 cells. FEBS Journal, 2001, 268, 531-535.	0.2	22
46	Δ9 -Tetrahydrocannabinol induces apoptosis in human prostate PC-3 cells via a receptor-independent mechanism. FEBS Letters, 1999, 458, 400-404.	1.3	135
47	cAMP signalling mechanisms with aging in the Ceratitis capitata brain. Mechanisms of Ageing and Development, 1997, 97, 45-53.	2.2	13
48	Ceramide-induced translocation of protein kinase C ζ in primary cultures of astrocytes. FEBS Letters, 1997, 415, 271-274.	1.3	36
49	Induction of nerve growth factor synthesis by sphingomyelinase and ceramide in primary astrocyte cultures. Molecular Brain Research, 1997, 52, 90-97.	2.5	35
50	Adaptations of the β-adrenoceptor-adenylyl cyclase system in rat skeletal muscle to endurance physical training. Pflugers Archiv European Journal of Physiology, 1997, 434, 809-814.	1.3	13
51	Regulation of nerve growth factor secretion and mRNA expression by bacterial lipopolysaccharide in primary cultures of rat astrocytes. , 1997, 49, 569-575.		23
52	Adenylyl cyclase system is affected differently by endurance physical training in heart and adipose tissue. Biochemical Pharmacology, 1996, 51, 1321-1329.	2.0	21
53	Levels and activity of brain protein kinase C α and ζ during the aging of the medfly. Mechanisms of Ageing and Development, 1996, 92, 21-29.	2.2	5
54	Addition of phosphatidylcholine-phospholipase C induces cellular redistribution and phosphorylation of protein kinase C 134 in C 6 glial cells. Neuroscience Letters, 1996, 219, 68-70.	1.0	5

INES DIAZ-LAVIADA

#	Article	IF	CITATIONS
55	Effect of Endurance Physical Training on Rat Liver Adenylyl Cyclase System. Cellular Signalling, 1996, 8, 317-322.	1.7	6
56	Phosphatidylcholine-phospholipase C mediates the induction of nerve growth factor in cultured glial cells. FEBS Letters, 1995, 364, 301-304.	1.3	15
57	Cardiac β-adrenoceptors, C-proteins and adenylate cyclase regulation during myocardial hypertrophy. Cellular Signalling, 1993, 5, 169-179.	1.7	14
58	Binding studies and localization ofEscherichia coli lipopolysaccharide in cultured hepatocytes by an immunocolloidal-gold technique. The Histochemical Journal, 1991, 23, 221-228.	0.6	15
59	Evidence for a role of phosphatidylcholine-hydrolysing phospholipase C in the regulation of protein kinase C by ras and src oncogenes EMBO Journal, 1990, 9, 3907-3912.	3.5	91
60	Phospholipase C-mediated hydrolysis of phosphatidlycholine is an important step in PDGF-stimulated DNA synthesis. Cell, 1990, 61, 1113-1120.	13.5	179
61	Immunocytochemical Localization of Bacterial Lipopolysaccharide with Colloidal-Gold Probes in Different Target Cells. Advances in Experimental Medicine and Biology, 1990, 256, 199-202.	0.8	10
62	Involvement of cytochrome b5 in the cytotoxic response to Escherichia coli Lipopolysaccharide. Molecular and Cellular Biochemistry, 1989, 87, 79-84.	1.4	7
63	Effect ofEscherichia coli lipopolysaccharide on the microviscosity of liver plasma membranes and hepatocyte suspensions and monolayers. Cell Biochemistry and Function, 1987, 5, 55-61.	1.4	28