Robert W Eason

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2252658/publications.pdf

Version: 2024-02-01

713013 566801 29 462 15 21 citations h-index g-index papers 30 30 30 318 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Predictive capabilities for laser machining via a neural network. Optics Express, 2018, 26, 17245.	1.7	39
2	Machine learning for 3D simulated visualization of laser machining. Optics Express, 2018, 26, 21574.	1.7	37
3	Dynamic spatial pulse shaping via a digital micromirror device for patterned laser-induced forward transfer of solid polymer films. Optical Materials Express, 2015, 5, 1129.	1.6	31
4	Machine learning for multi-dimensional optimisation and predictive visualisation of laser machining. Journal of Intelligent Manufacturing, 2021, 32, 1471-1483.	4.4	31
5	Single-pulse multiphoton polymerization of complex structures using a digital multimirror device. Optics Express, 2013, 21, 14853.	1.7	29
6	The future of bone regeneration: integrating Al into tissue engineering. Biomedical Physics and Engineering Express, 2021, 7, 052002.	0.6	26
7	Real-time particle pollution sensing using machine learning. Optics Express, 2018, 26, 27237.	1.7	22
8	Laser-induced backward transfer of nanoimprinted polymer elements. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1,1	21
9	Particle and salinity sensing for the marine environment via deep learning using a Raspberry Pi. Environmental Research Communications, 2019, 1, 035001.	0.9	21
10	Sub-diffraction limit laser ablation via multiple exposures using a digital micromirror device. Applied Optics, 2017, 56, 6398.	0.9	20
11	A neural lens for super-resolution biological imaging. Journal of Physics Communications, 2019, 3, 065004.	0.5	18
12	Deep learning for the monitoring and process control of femtosecond laser machining. JPhys Photonics, 2019, 1, 035002.	2.2	18
13	Rapid bespoke laser ablation of variable period grating structures using a digital micromirror device for multi-colored surface images. Applied Optics, 2015, 54, 4984.	2.1	16
14	Image-based monitoring of femtosecond laser machining via a neural network. JPhys Photonics, 2019, 1, 015008.	2.2	16
15	Single step phase optimisation for coherent beam combination using deep learning. Scientific Reports, 2022, 12, 5188.	1.6	16
16	Fibre-optic based particle sensing via deep learning. JPhys Photonics, 2019, 1, 044004.	2.2	15
17	Single-pulse ablation of multi-depth structures via spatially filtered binary intensity masks. Applied Optics, 2018, 57, 1904.	0.9	14
18	Laser-induced backward transfer of monolayer graphene. Applied Surface Science, 2020, 533, 147488.	3.1	14

#	Article	IF	CITATIONS
19	Lensless imaging of pollen grains at three-wavelengths using deep learning. Environmental Research Communications, 2020, 2, 075005.	0.9	12
20	Modeling adult skeletal stem cell response to laser-machined topographies through deep learning. Tissue and Cell, 2020, 67, 101442.	1.0	9
21	Ultrafast multi-layer subtractive patterning. Optics Express, 2018, 26, 11928.	1.7	8
22	Playing optical tweezers with deep reinforcement learning: in virtual, physical and augmented environments. Machine Learning: Science and Technology, 2021, 2, 035024.	2.4	7
23	A SARS-CoV-2 nucleocapsid ELISA represents a low-cost alternative to lateral flow testing for community screening in LMI countries. Journal of Infection, 2022, 84, 48-55.	1.7	7
24	Deep-Learning-Assisted Focused Ion Beam Nanofabrication. Nano Letters, 2022, 22, 2734-2739.	4.5	7
25	Closed-loop corrective beam shaping for laser processing of curved surfaces. Journal of Micromechanics and Microengineering, 2018, 28, 127001.	1.5	4
26	Semantic segmentation of pollen grain images generated from scattering patterns via deep learning. Journal of Physics Communications, 2021, 5, 055017.	0.5	2
27	In-flight sensing of pollen grains via laser scattering and deep learning. Engineering Research Express, 2021, 3, 025021.	0.8	1
28	Determination of size of urban particulates from occluded scattering patterns using deep learning and data augmentation. Environmental Research Communications, 2021, 3, 025003.	0.9	0
29	Exploring sequence transformation in magnetic resonance imaging via deep learning using data from a single asymptomatic patient. Journal of Physics Communications, 2021, 5, 095015.	0.5	O