
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2252443/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	miR-21/Gemini surfactant-capped gold nanoparticles as potential therapeutic complexes: Synthesis, characterization and in vivo nanotoxicity probes. Journal of Molecular Liquids, 2020, 313, 113577.	4.9	9
2	Measuring nanoparticle-induced resonance energy transfer effect by electrogenerated chemiluminescent reactions. RSC Advances, 2020, 10, 3861-3871.	3.6	0
3	What controls the unusual melting profiles of small AuNPs/DNA complexes. Physical Chemistry Chemical Physics, 2019, 21, 11019-11032.	2.8	7
4	Reversible DNA compaction induced by partial intercalation of 16-Ph-16 gemini surfactants: evidence of triple helix formation. Physical Chemistry Chemical Physics, 2018, 20, 24902-24914.	2.8	9
5	Aqueous Gold Nanoparticle Solutions for Improved Efficiency in Electrogenerated Chemiluminescent Reactions. ACS Applied Nano Materials, 2018, 1, 5307-5315.	5.0	10
6	Ethanol effect on gold nanoparticle aggregation state and its implication in the interaction mechanism with DNA. Journal of Colloid and Interface Science, 2018, 529, 65-76.	9.4	17
7	Electrochemiluminescent (ECL) [Ru(bpy)3]2+/PAMAM dendrimer reactions: coreactant effect and 5-fluorouracil/dendrimer complex formation. Analytical and Bioanalytical Chemistry, 2016, 408, 7213-7224.	3.7	8
8	Nonfunctionalized Gold Nanoparticles: Synthetic Routes and Synthesis Condition Dependence. Chemistry - A European Journal, 2015, 21, 9596-9609.	3.3	48
9	Electrogenerated chemiluminescence reactions between the [Ru(bpy)3]2+ complex and PAMAM GX.0 dendrimers in an aqueous medium. Journal of Inorganic Biochemistry, 2015, 151, 18-25.	3.5	5
10	DNA conformational changes induced by cationic gemini surfactants: the key to switching DNA compact structures into elongated forms. RSC Advances, 2015, 5, 29433-29446.	3.6	24
11	DNA Strand Elongation Induced by Small Gold Nanoparticles at High Ethanol Content. Journal of Physical Chemistry C, 2014, 118, 4416-4428.	3.1	14
12	On the Application of the Pseudophase Model to Excited State Processes: Quenching of Pyrene by the Iodide Ion in β yclodextrin and Micellar (SDS) Solutions. International Journal of Chemical Kinetics, 2014, 46, 597-605.	1.6	0
13	Free energy of binding of cationic metal complexes to AuNPs through electron-transfer processes. Soft Matter, 2014, 10, 8482-8488.	2.7	1
14	Chemical and photochemical reactions under restricted geometry conditions: Similarities and differences. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 278, 25-30.	3.9	3
15	Improving the understanding of DNA–propanediyl-1,3-bis(dodecyldimethylammonium) dibromide interaction using thermodynamic, structural and kinetic approaches. Physical Chemistry Chemical Physics, 2013, 15, 20064.	2.8	13
16	Binding Study of the [Ru(NH ₃) ₅ pz] ²⁺ Complex to Bile Anion Aggregates through Kinetic Measurements. International Journal of Chemical Kinetics, 2013, 45, 780-786.	1.6	0
17	Electrochemiluminescence of the [Ru(bpy) ₃] ²⁺ Complex: The Coreactant Effect of PAMAM Dendrimers in an Aqueous Medium. Inorganic Chemistry, 2012, 51, 10825-10831.	4.0	26
18	Study of diffusion-controlled and activation–diffusion-controlled electron-transfer processes from quenching measurements. Chemical Physics, 2012, 392, 160-165.	1.9	2

#	Article	IF	CITATIONS
19	Binding study to sodium cholate aggregates using a kinetic method and the reaction: [Ru(NH3)5pz]2++[Co(C2O4)3]3â ^{~'} as a probe. Chemical Physics Letters, 2010, 499, 254-256.	2.6	1
20	Photoinduced Electron-Transfer Reactions: A Study of the Diffusion-Controlled and Activation-Diffusion-Controlled Processes. Journal of Physical Chemistry A, 2010, 114, 7912-7917.	2.5	2
21	Reaction and Reorganization Free Energies of Electron-Transfer Reactions under Restricted Geometry Conditions. Journal of Physical Chemistry B, 2010, 114, 9094-9100.	2.6	2
22	Study of the electron transfer reaction between [Co(EDTA)] ^{â^'} and [Ru(NH ₃) ₅ py] ²⁺ in methanol–water mixtures. International Journal of Chemical Kinetics, 2009, 41, 658-666.	1.6	2
23	Abnormal salt effects on a cation/anion reaction. An interpretation based on the analysis of the components of the experimental rate constant. Collection of Czechoslovak Chemical Communications, 2009, 74, 627-641.	1.0	1
24	Estimation of the reorganization and reaction free energies for electron transfer processes from optical and thermal data. An application to the reaction [FeII(CN)5pzCoIII(NH3)5] → [FeIII(CN)5pzCoII(NH3)5]. New Journal of Chemistry, 2006, 30, 712-716.	2.8	0
25	Salt and Solvent Effects on the Kinetics of the Oxidation of the Excited State of the [Ru(bpy)3]2+Complex by S2O82 Journal of Physical Chemistry A, 2006, 110, 4196-4201.	2.5	12
26	Salt and Solvent Effects on the Kinetics and Thermodynamics of the Inclusion of the Ruthenium Complex [Ru(NH3)5(4,4â€ [~] -bpy)]2+in β-Cyclodextrin. Journal of Physical Chemistry B, 2006, 110, 12959-12963.	2.6	10
27	Ion pairing effects on the kinetic of the intramolecular electron transfer reaction [Fell(CN)5pzCollI(NH3)5]→[FellI(CN)5pzColl(NH3)5]. Chemical Physics Letters, 2006, 422, 382-385.	2.6	2
28	Electrolyte effects on the intervalence transition within discrete binuclear cyano-bridged complexes. An estimation of activation free energy from static, optical and electrochemical data. Inorganica Chimica Acta, 2006, 359, 149-158.	2.4	11
29	Asymmetric salt effects on anion/cation reactions: A comparative study of the [Fe(CN)6]4â^'+ [Co(NH3)5pz]3+and [Ru(NH3)5pz]2++ [Co(C2O4)3]3â^reactions. International Journal of Chemical Kinetics, 2005, 37, 81-89.	1.6	2
30	Method for the Evaluation of the Reorganization Energy of Electron Transfer Reactions Produced under Restricted Geometry Conditions. Journal of Physical Chemistry B, 2005, 109, 1703-1707.	2.6	14
31	Strength and Character of Peptide/Anion Interactions. Journal of Physical Chemistry B, 2005, 109, 19676-19680.	2.6	5
32	DNA interactions with small solutes: change in the character of the binding of [Ru(NH3)5pz]2+ to DNA as a consequence of changes in the solvent. Chemical Physics, 2004, 297, 163-169.	1.9	11
33	Effects of SB1.5G and SB4.5G dendrimers on the rate of the electron transfer reaction between [Ru(NH3)5pz]2+ and [Co(C2O4)3]3âr'. Chemical Physics Letters, 2004, 398, 82-86.	2.6	13
34	Kinetic Study of the Oxidation of [Ru(NH3)5pz]2+by [Co(C2O4)3]3-in AOTâ^'Oilâ^'Water Microemulsions and in CTACl Micellar Solutions. Langmuir, 2004, 20, 1558-1563.	3.5	27
35	On the Equivalence of the Pseudophase Related Models and the Brönsted Approach in the Interpretation of Reactivity under Restricted Geometry Conditions. Progress in Reaction Kinetics and Mechanism, 2004, 29, 289-310.	2.1	20
36	Use of the Pseudophase Model in the Interpretation of Reactivity under Restricted Geometry Conditions. An Application to the Study of the [Ru(NH3)5pz]2++ S2O82-Electron-Transfer Reaction in Different Microheterogeneous Systems. Journal of the American Chemical Society, 2002, 124, 5154-5164.	13.7	70

#	Article	IF	CITATIONS
37	Title is missing!. Transition Metal Chemistry, 2002, 27, 127-133.	1.4	2
38	Salt, Solvent, and Micellar Effects on the Intervalence Transition within the Binuclear Complex Pentaammineruthenium(III)(μ-cyano)pentacyanoiron(II). An Estimation of Rate Constant from Static (Optical and Electrochemical) Data. Langmuir, 2001, 17, 980-987.	3.5	14
39	Experimental and simulation studies of the electron transfer reaction between [Ru(NH3)5pz]2+ and [Co(C2O4)3]3 Physical Chemistry Chemical Physics, 2001, 3, 1271-1276.	2.8	10
40	Effect of DNA on the rate of electron transfer reactions between non-intercalated reactants: kinetic study of the reactions [Ru(NH3)5pz]2++[Co(C2O4)3]3- and [Ru(NH3)5py]2+ +[Co(NH3)4pzCO2]2+ in aqueous solutions in the presence of DNA. Physical Chemistry Chemical Physics, 2001, 3, 4412-4417.	2.8	26
41	Electron transfer reactions in micellar systems: Separation of the true (unimolecular) electron transfer rate constant in its components. Chemical Physics, 2001, 263, 139-148.	1.9	23
42	Electron Transfer Reactions in Micellar Systems. Progress in Reaction Kinetics and Mechanism, 2000, 25, 371-407.	2.1	23
43	Electron transfer reactions in solvent mixtures: the excess component of solvent reorganization free energy. Coordination Chemistry Reviews, 2000, 204, 173-198.	18.8	19
44	Influence of the Micellar Electric Field on Electron-Transfer Processes (II):Â A Study of the Ru(NH3)5pz2++ Co(C2O4)33-Reaction in SDS Micellar Solution Containing NaCl. Langmuir, 2000, 16, 7986-7990.	3.5	14
45	Estimation of electron transfer rate constants by static (optical and electrochemical) measurements. Chemical Physics, 1999, 250, 321-334.	1.9	12
46	Salt effects upon the S2O82? + Ru(NH3)5pz2+ electron transfer reaction. International Journal of Chemical Kinetics, 1999, 31, 485-490.	1.6	7
47	Procedure for the determination of redox potentials of chemically (and electrochemically) irreversible inorganic redox couples from spectroscopic data. Journal of the Chemical Society Dalton Transactions, 1999, , 3035-3039.	1.1	10
48	Micellar Effects upon the Reaction between Acetonitrile Pentacyanoferrate(II) and Bis(ethylenediammine)(2-pyrazinecarboxylato)cobalt(III). Langmuir, 1998, 14, 1539-1543.	3.5	27
49	Effect of the Micellar Electric Field on Electron-Transfer Processes. A Study of the Metal-to-Metal Charge Transfer within the Binuclear Complex Pentaammineruthenium(III)â [~] (μ-Cyano)pentacyanoruthenium(II) in Micellar Solutions of Sodium Dodecvlsulfate (SDS) and Hexadecvltrimethvlammonium Chloride (CTACI). Langmuir. 1998. 14. 3762-3766.	3.5	20
50	Calculation of rate constants from UV-vis spectroscopic data: an application of the Marcus-Hush model. Computational and Theoretical Chemistry, 1996, 371, 153-160.	1.5	9
51	Study of the reduction of Co(NH3)4(pzCO2)2+ by Fe(CN)64- in binary aqueous mixtures: An interpretation of solvent effects based on spectroscopic data. Studies in Physical and Theoretical Chemistry, 1995, 83, 261-264.	0.0	0
52	lonic strength effects in binary aqueous mixtures: Study of the reaction between Co(en)2(2-pzCO2)2+and Fe(CN)5H2O3â^'. International Journal of Chemical Kinetics, 1995, 27, 807-815.	1.6	7
53	Study of the reduction of Co(NH3)4(pzCO2)2+ by Fe(CN)54â~' in binary aquerous mixtures: An interpretations of solvent effects based on spectroscopic data. Journal of Molecular Liquids, 1995, 65-66, 261-264.	4.9	8
54	Activation parameters and the influence of ionic strength upon the hexacyanoferrate(III)–iodide reaction in some aqueous organic media. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 2011-2013.	1.7	8

#	Article	IF	CITATIONS
55	Excess molar volumes and refractive indices of cis-9-octadecenoic acid + n-alkanes or alkan-1-ols at 298.15 K. Journal of Chemical & Engineering Data, 1993, 38, 512-515.	1.9	28
56	Limiting partial molar volumes of electrolytes in dimethyl sulfoxide–water mixtures at 298.15 K. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 223-226.	1.7	11
57	Partial molar volumes of transfer at infinite dilution of some electrolytes in dimethylsulfoxide-water mixtures at 298.15 K. Journal of Chemical & Engineering Data, 1992, 37, 333-337.	1.9	9
58	Solubility of naphthalene in water + alcohol solutions at various temperatures. Journal of Chemical & Engineering Data, 1990, 35, 244-246.	1.9	16
59	Setschenow coefficients for caffeine, theophylline and theobromine in aqueous electrolyte solutions. Journal of the Chemical Society Faraday Transactions I, 1987, 83, 1029.	1.0	15
60	Effect of the medium in hexacyanoferrate (III)-iodide and peroxodisulfate-iodide reaction. Reaction Kinetics and Catalysis Letters, 1985, 27, 329-332.	0.6	0
61	Salt and medium effects in the oxidation of iodide by hexacyanoferrate(III). Journal of the Chemical Society Dalton Transactions, 1983, , 2679.	1.1	8