
Julia Genova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2252361/publications.pdf Version: 2024-02-01

LULIA GENOVA

#	Article	IF	CITATIONS
1	Silver nanoparticles synthesis and their effect on the SOPC lipid structure. Journal of Physics: Conference Series, 2022, 2240, 012019.	0.4	1
2	Green Synthesis of Gold Nanoparticles: An Eco-Friendly Approach. Chemistry, 2022, 4, 345-369.	2.2	46
3	Influence of melatonin on the structural and thermal properties of SOPC lipid membranes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 129081.	4.7	1
4	Influence of sucrose on the phase behaviour of phospholipid model systems. Journal of Physics: Conference Series, 2021, 1762, 012012.	0.4	0
5	Physical properties of SOPC lipid membranes containing cholesterol by molecular dynamics simulation. Advances in Biomembranes and Lipid Self-Assembly, 2021, , 1-30.	0.6	3
6	Influence of hydrophobic Au nanoparticles on SOPC lipid model systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125090.	4.7	7
7	Magneto-mechanical actuation of barium-hexaferrite nanoplatelets for the disruption of phospholipid membranes. Journal of Colloid and Interface Science, 2020, 579, 508-519.	9.4	15
8	Study of SOPC with embedded pristine and amide-functionalized single wall carbon nanotubes by DSC and FTIR spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125261.	4.7	3
9	Physico-chemical characterizations of lipid membranes in presence of cholesterol. Advances in Biomembranes and Lipid Self-Assembly, 2020, 31, 1-42.	0.6	5
10	Physics and Applications of Ðdvanced and Multifunctional Materials. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900267.	1.8	0
11	Differential Scanning Calorimetric Study of the Effect of Cholesterol on the Thermotropic Phase Behavior of the Phospholipid 1â€Stearoylâ€2â€Oleoylâ€snâ€Glyceroâ€3â€Phosphocholine. Journal of Surfactants and Detergents, 2019, 22, 1229-1235.	5 2.1	4
12	Gel–liquid crystal phase transition in dry and hydrated SOPC phospholipid studied by differential scanning calorimetry. Phase Transitions, 2019, 92, 323-333.	1.3	10
13	Fourier-transform infrared and Raman characterization of bilayer membranes of the phospholipid SOPC and its mixtures with cholesterol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 557, 85-93.	4.7	15
14	Interaction of elaiophylin with model bilayer membrane. Journal of Physics: Conference Series, 2017, 794, 012031.	0.4	1
15	INERA Conference 2015: Light in Nanoscience and Nanotechnology (LNN 2015). Journal of Physics: Conference Series, 2016, 682, 011001.	0.4	0
16	Morphological study of lipid vesicles in presence of amphotericin B via modification of the microfluidic CellASIC platform and LED illumination microscopy. Journal of Physics: Conference Series, 2016, 682, 012029.	0.4	1
17	Bending Elasticity Modulus of Giant Vesicles Composed of Aeropyrum Pernix K1 Archaeal Lipid. Life, 2015, 5, 1101-1110.	2.4	6
18	Effect of Amphotericin B antibiotic on the properties of model lipid membrane. Journal of Physics: Conference Series, 2014, 558, 012027.	0.4	5

Julia Genova

#	Article	IF	CITATIONS
19	Influence of nanoparticle–membrane electrostatic interactions on membrane fluidity and bending elasticity. Chemistry and Physics of Lipids, 2014, 178, 52-62.	3.2	34
20	Influence of iron oxide nanoparticles on bending elasticity and bilayer fluidity of phosphotidylcholine liposomal membranes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 460, 248-253.	4.7	12
21	Cholesterol influence on the bending elasticity of lipid membranes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 460, 79-82.	4.7	8
22	18th International School on Condensed Matter Physics. Journal of Physics: Conference Series, 2014, 558, 011001.	0.4	0
23	Registration and analysis of the shape fluctuations of nearly spherical lipid vesicles. Physical Review E, 2013, 88, 022707.	2.1	45
24	Marin Mitov Lectures. Behavior Research Methods, 2013, 17, 1-27.	4.0	8
25	Influence of Cholesterol on the Elastic Properties of Lipid Membranes. Journal of Physics: Conference Series, 2012, 398, 012037.	0.4	9
26	Vesicles with Tubular Protrusions in Symmetrical and non Symmetrical Conditions. Biotechnology and Biotechnological Equipment, 2012, 26, 205-208.	1.3	1
27	A study on the interaction of nanoparticles with lipid membranes and their influence on membrane fluidity. Journal of Physics: Conference Series, 2012, 398, 012034.	0.4	13
28	Mechanoformation of neutral giant phospholipid vesicles in high ionic strength solution. Chemistry and Physics of Lipids, 2011, 164, 727-731.	3.2	13
29	Does maltose influence on the elasticity of SOPC membrane?. Journal of Physics: Conference Series, 2010, 253, 012063.	0.4	4
30	Bending elasticity of lipid membranes in presence of beta 2 glycoprotein I in the surrounding solution. Journal of Physics: Conference Series, 2010, 253, 012064.	0.4	5
31	Sugars in the Aqueous Phase Change the Mechanical Properties of Lipid Mono- and Bilayers. Molecular Crystals and Liquid Crystals, 2006, 449, 95-106.	0.9	50
32	The influence of sucrose on the elasticity of SOPC lipid membrane studied by the analysis of thermally induced shape fluctuations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 282-283, 420-422.	4.7	25
33	Permeability and the hidden area of lipid bilayers. European Biophysics Journal, 2004, 33, 706-714.	2.2	27
34	Title is missing!. Journal of Materials Science: Materials in Electronics, 2003, 14, 819-820.	2.2	3