
Chi Nam Ignatius Pang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2252335/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dual targeting of the epigenome via FACT complex and histone deacetylase is a potent treatment strategy for DIPG. Cell Reports, 2021, 35, 108994.	2.9	21
2	HGG-09. TARGETING FACILITATES CHROMATIN TRANSCRIPTION (FACT) AS A NOVEL STRATEGY THAT ENHANCES RESPONSE TO HISTONE DEACETYLASE (HDAC) INHIBITION IN DIPG. Neuro-Oncology, 2021, 23, i18-i19.	0.6	0
3	Cross-linking Mass Spectrometry Analysis of the Yeast Nucleus Reveals Extensive Protein–Protein Interactions Not Detected by Systematic Two-Hybrid or Affinity Purification-Mass Spectrometry. Analytical Chemistry, 2020, 92, 1874-1882.	3.2	20
4	Higher frequency of vertebrateâ€infecting viruses in the gut of infants born to mothers with type 1 diabetes. Pediatric Diabetes, 2020, 21, 271-279.	1.2	10
5	Analytical Guidelines for co-fractionation Mass Spectrometry Obtained through Global Profiling of Gold Standard Saccharomyces cerevisiae Protein Complexes. Molecular and Cellular Proteomics, 2020, 19, 1876-1895.	2.5	14
6	Controlling the Controllers: Regulation of Histone Methylation by Phosphosignalling. Trends in Biochemical Sciences, 2020, 45, 1035-1048.	3.7	10
7	DIPG-14. TARGETING POLO-LIKE KINASE 1 IN COMBINATION WITH KEY ONCOGENIC DRIVERS IN DIPG: FROM SINGLE AGENT TO COMBINATION STRATEGIES. Neuro-Oncology, 2020, 22, iii289-iii289.	0.6	0
8	Different Pathways Mediate Amphotericin-Lactoferrin Drug Synergy in Cryptococcus and Saccharomyces. Frontiers in Microbiology, 2019, 10, 2195.	1.5	5
9	Distinct Gut Virome Profile of Pregnant Women With Type 1 Diabetes in the ENDIA Study. Open Forum Infectious Diseases, 2019, 6, ofz025.	0.4	32
10	Higher abundance of enterovirus A species in the gut of children with islet autoimmunity. Scientific Reports, 2019, 9, 1749.	1.6	37
11	Visualizing Postâ€Translational Modifications in Protein Interaction Networks Using PTMOracle. Current Protocols in Bioinformatics, 2019, 66, e71.	25.8	3
12	Investigating the Network Basis of Negative Genetic Interactions inSaccharomyces cerevisiaewith Integrated Biological Networks and Triplet Motif Analysis. Journal of Proteome Research, 2018, 17, 1014-1030.	1.8	4
13	Knockout of the Hmt1p Arginine Methyltransferase in Saccharomyces cerevisiae Leads to the Dysregulation of Phosphate-associated Genes and Processes. Molecular and Cellular Proteomics, 2018, 17, 2462-2479.	2.5	8
14	Systems-Level Analysis of Bacterial Regulatory Small RNA Networks. RNA Technologies, 2018, , 97-127.	0.2	3
15	Does the primary site really matter? Profiling mucinous ovarian cancers of uncertain primary origin (MO-CUP) to personalise treatment and inform the design of clinical trials. Gynecologic Oncology, 2018, 150, 527-533.	0.6	14
16	Systems-based approaches enable identification of gene targets which improve the flavour profile of low-ethanol wine yeast strains. Metabolic Engineering, 2018, 49, 178-191.	3.6	16
17	Transcriptome and network analyses in Saccharomyces cerevisiae reveal that amphotericin B and lactoferrin synergy disrupt metal homeostasis and stress response. Scientific Reports, 2017, 7, 40232.	1.6	18
18	Small <scp>RNA</scp> interactome of pathogenic <i>E.Âcoli</i> revealed through crosslinking of <scp>RN</scp> ase E. EMBO Journal. 2017. 36. 374-387.	3.5	153

Chi Nam Ignatius Pang

#	Article	IF	CITATIONS
19	PTMOracle: A Cytoscape App for Covisualizing and Coanalyzing Post-Translational Modifications in Protein Interaction Networks. Journal of Proteome Research, 2017, 16, 1988-2003.	1.8	17
20	Synergy and antagonism between iron chelators and antifungal drugs in Cryptococcus. International Journal of Antimicrobial Agents, 2016, 48, 388-394.	1.1	54
21	Proteomic Validation of Transcript Isoforms, Including Those Assembled from RNA-Seq Data. Journal of Proteome Research, 2015, 14, 3541-3554.	1.8	13
22	Tools to Covisualize and Coanalyze Proteomic Data with Genomes and Transcriptomes: Validation of Genes and Alternative mRNA Splicing. Journal of Proteome Research, 2014, 13, 84-98.	1.8	40
23	Identification of differentiation-stage specific markers that define the ex vivo osteoblastic phenotype. Bone, 2014, 67, 23-32.	1.4	62
24	Disturbed protein–protein interaction networks in metastatic melanoma are associated with worse prognosis and increased functional mutation burden. Pigment Cell and Melanoma Research, 2013, 26, 708-722.	1.5	12
25	Children With Islet Autoimmunity and Enterovirus Infection Demonstrate a Distinct Cytokine Profile. Diabetes, 2012, 61, 1500-1508.	0.3	37
26	Cytomegalovirus Infection During Pregnancy With Maternofetal Transmission Induces a Proinflammatory Cytokine Bias in Placenta and Amniotic Fluid. Journal of Infectious Diseases, 2012, 205, 1305-1310.	1.9	73
27	A Multidimensional Matrix for Systems Biology Research and Its Application to Interaction Networks. Journal of Proteome Research, 2012, 11, 5204-5220.	1.8	5
28	The methylproteome and the intracellular methylation network. Proteomics, 2012, 12, 564-586.	1.3	73
29	Identification of arginine- and lysine-methylation in the proteome of Saccharomyces cerevisiae and its functional implications. BMC Genomics, 2010, 11, 92.	1.2	78
30	Proteins Deleterious on Overexpression Are Associated with High Intrinsic Disorder, Specific Interaction Domains, and Low Abundance. Journal of Proteome Research, 2010, 9, 1218-1225.	1.8	18
31	The Interactorium: Visualising proteins, complexes and interaction networks in a virtual 3â€Đ cell. Proteomics, 2009, 9, 5309-5315.	1.3	8
32	Are protein complexes made of cores, modules and attachments?. Proteomics, 2008, 8, 425-434.	1.3	30
33	High throughput protein-protein interaction data: clues for the architecture of protein complexes. Proteome Science, 2008, 6, 32.	0.7	2
34	Identifying foldable regions in protein sequence from the hydrophobic signal. Nucleic Acids Research, 2007, 36, 578-588.	6.5	15
35	Surface Accessibility of Protein Post-Translational Modifications. Journal of Proteome Research, 2007, 6, 1833-1845.	1.8	68
36	Protein–protein interactions and disease: Use of S. cerevisiae as a model system. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 838-847.	1.1	11