Shuangquan Liao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2252254/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Non-rubber components tuning mechanical properties of natural rubber from vulcanization kinetics. Polymer, 2019, 183, 121911.	3.8	53
2	Mimicking the Mechanical Robustness of Natural Rubber Based on a Sacrificial Network Constructed by Phospholipids. ACS Applied Materials & Interfaces, 2020, 12, 14468-14475.	8.0	42
3	Study on the ozone aging mechanism of Natural Rubber. Polymer Degradation and Stability, 2021, 186, 109514.	5.8	39
4	Mechanical and dynamic mechanical properties of natural rubber blended with waste rubber powder modified by both microwave and sol–gel method. Journal of Applied Polymer Science, 2013, 129, 2313-2320.	2.6	22
5	Exploring the unique characteristics of natural rubber induced by coordination interaction between proteins and Zn2+. Polymer, 2020, 193, 122357.	3.8	22
6	Influence of non-rubber components on film formation behavior of natural rubber latex. Colloid and Polymer Science, 2020, 298, 1263-1271.	2.1	17
7	The Role of Non-Rubber Components on Molecular Network of Natural Rubber during Accelerated Storage. Polymers, 2020, 12, 2880.	4.5	17
8	Toughening natural rubber by the innate sacrificial network. Polymer, 2020, 194, 122419.	3.8	17
9	Xanthate-modified nanoTiO ₂ as a novel vulcanization accelerator enhancing mechanical and antibacterial properties of natural rubber. Nanotechnology Reviews, 2021, 10, 478-487.	5.8	11
10	The role of non-rubber components acting as endogenous antioxidants on thermal-oxidative aging behavior of natural rubber. Polymer Testing, 2022, 111, 107614.	4.8	11
11	Influence of l-quebrachitol on the properties of centrifuged natural rubber. E-Polymers, 2021, 21, 420-427.	3.0	10
12	In-situ observation of spatial organization of natural rubber latex particles and exploring the relationship between particle size and mechanical properties of natural rubber. Industrial Crops and Products, 2022, 180, 114737.	5.2	10
13	The role of natural rubber endogenous proteins in promoting the formation of vulcanization networks. E-Polymers, 2022, 22, 445-453.	3.0	10
14	Effect of protein on the thermogenesis performance of natural rubber matrix. Scientific Reports, 2020, 10, 16417.	3.3	9
15	Mechanically Robust Elastomers Enabled by a Facile Interfacial Interactionsâ€Driven Sacrificial Network. Macromolecular Rapid Communications, 2021, 42, e2100509.	3.9	9
16	Towards high performance anti-aging diolefin elastomers based on structure healing strategy. Polymer, 2020, 186, 122076.	3.8	8
17	Role of endogenous glucose on natural rubber molecular chains and natural network architecture based on biological action and chelation. Polymer, 2020, 202, 122752.	3.8	8
18	Natural rubber latex/MXene foam with robust and multifunctional properties. E-Polymers, 2021, 21, 179-185.	3.0	8

Shuangquan Liao

#	Article	IF	CITATIONS
19	Based on transalkylation reaction the rearrangeable conventional sulfur network facile design for vulcanized diolefin elastomers. Journal of Applied Polymer Science, 2021, 138, 51182.	2.6	7
20	Enabling Superior Thermo–Oxidative Resistance Elastomers Based on a Structure Recovery Strategy. Macromolecular Rapid Communications, 2021, 42, e2000762.	3.9	6
21	Insight on natural rubber's relationship with coagulation methods and some of its properties during storage. Journal of Rubber Research (Kuala Lumpur, Malaysia), 2021, 24, 555-562.	1.1	6
22	New insight into naturally occurring network and entanglements induced strain behavior of vulcanized natural rubber. Polymer, 2022, 241, 124545.	3.8	6
23	Analysis of the thermogenesis mechanism of natural rubber under high speed strain. Polymers for Advanced Technologies, 2020, 31, 1994-2006.	3.2	5
24	Effect of N, N′-m-phenylene bismaleimide on mechanical performance of waste rubber powder sintered by high-pressure high-temperature method. Journal of Rubber Research (Kuala Lumpur, Malaysia), 2020, 23, 41-46.	1.1	4
25	Quantitative Analysis of Abnormal Groups on Molecular Chain of Natural Rubber. Polymer Science - Series B, 2019, 61, 856-864.	0.8	4
26	Mussel-inspired polydopamine functionalized silica as an effective antioxidant and reinforcer for elastomers. Composites Communications, 2022, 29, 101049.	6.3	4
27	MXene Enabling the Long-Term Superior Thermo-Oxidative Resistance for Elastomers. Polymers, 2021, 13, 493.	4.5	3
28	Characterization of the trans-structure in the molecular chain structure of natural rubber. Journal of Molecular Structure, 2021, 1246, 131209.	3.6	3
29	Microstructure and Lamellae Phase of Raw Natural Rubber via Spontaneous Coagulation Assisted by Sugars. Polymers, 2021, 13, 4306.	4.5	2
30	Structure and Temperature Induced Crystallization of Natural Rubber with Different Milling Times. Polymer Science - Series A, 2021, 63, 228-237.	1.0	1
31	Composition properties of rubber from parts of Taraxacum Kok-saghyz roots. Journal of Rubber Research (Kuala Lumpur, Malaysia), 2021, 24, 607-613.	1.1	1
32	Toward Mechanically Robust Crosslinked Elastomers through Phase Transfer Agent Tuning the Solubility of Zn2+ in the Organic Phase. Polymers, 2022, 14, 1234.	4.5	1