Chandran Karunakaran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2252194/publications.pdf

Version: 2024-02-01

190 papers 4,046 citations

32 h-index 55 g-index

195 all docs 195
docs citations

195 times ranked 4888 citing authors

#	Article	IF	CITATIONS
1	Ni _{0.5} Zn _{0.5} Fe ₂ O ₄ â€dispersed In ₂ O ₃ â€spotted ZnO nanoparticles: Ammoniaâ€source and surface and photocatalytic properties. International Journal of Applied Ceramic Technology, 2022, 19, 2356-2366.	2.1	O
2	Synthesis of photocatalytic CdO-imbedded ZnO nanopebbles for enhanced biocidal activity. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2021, 12, 015014.	1.5	O
3	Tuning the optical, electrical and photocatalytic properties of nanoparticulate TiO2 through anatase-coating on rutile. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2020, 11, 025013.	1.5	1
4	Synthesis of superparamagnetic biocidal superior solar photocatalytic Fe3O4-implanted Ag2S-capped ZnO micro-clubbells. SN Applied Sciences, 2019, 1, 1.	2.9	1
5	Synthesis of Superparamagnetic ZnFe ₂ O ₄ -Core/Ag-Deposited ZnO-Shell Nanodiscs for Application as Visible Light Photocatalyst. Journal of Nanoscience and Nanotechnology, 2019, 19, 4064-4071.	0.9	6
6	CdO-implanted hexagonal ZnO nanoplatelets: red-shifted emission and enhanced charge carrier-resistance and bacteria-inactivation. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	6
7	Conversion of anilines into azobenzenes in acetic acid with perborate and Mo(VI): correlation of reactivities. Chemical Papers, 2019, 73, 375-385.	2.2	8
8	Synthesis, electrical, magnetic, optical and bactericidal properties and enhanced photocatalytic activity of Ag-decorated ZnFe 2 O 4 -dispersed ZnO nanoflakes. Surfaces and Interfaces, 2018, 10, 123-128.	3.0	8
9	CdO-Intercalated TiO2 Nanosphere-Clusters: Synthesis and Electrical, Optical and Photocatalytic Properties. Silicon, 2018, 10, 2927-2934.	3.3	9
10	Synthesis of Superparamagnetic Cu _{0.4} Zn _{0.6} Fe ₂ O ₄ -Implanted Bi ₂ S ₃ -Capped TiO ₂ 2D and 3D Nanostructures for Visible Light Photocatalysis. ACS Omega, 2018, 3, 18958-18966.	3.5	7
11	Electron Paramagnetic Resonance Spectroscopy. , 2018, , 169-228.		6
12	Applications of Electron Paramagnetic Resonance. , 2018, , 281-347.		O
13	Advances in Electron Paramagnetic Resonance. , 2018, , 229-280.		2
14	CdO-Implanted TiO ₂ Pebbles: Hydrothermal Synthesis and Electrical, Optical and Photocatalytic Properties. Materials Focus, 2018, 7, 188-193.	0.4	3
15	Enhancing Semiconductor-Photocatalytic Organic Transformation through Interparticle Charge Transfer. Materials Research Foundations, 2018, , 358-369.	0.3	1
16	Study of interfacial charge transfer in nanosemiconductor–molecule composites. Journal of Physical Organic Chemistry, 2017, 30, e3600.	1.9	0
17	Perforated ZnFe2O4/ZnO hybrid nanosheets: enhanced charge-carrier lifetime, photocatalysis, and bacteria inactivation. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	8
18	Superparamagnetic core/shell Fe 2 O 3 /ZnO nanosheets as photocatalyst cum bactericide. Catalysis Today, 2017, 284, 114-120.	4.4	31

#	Article	IF	CITATIONS
19	CuFe ₂ O ₄ -Encapsulated ZnO Nanoplates: Magnetically Retrievable Biocidal Photocatalyst. Journal of Nanoscience and Nanotechnology, 2017, 17, 4489-4497.	0.9	7
20	Synthesis, Optical, Electrical and Optoelectronic Characteristics and Photocatalytic Performance of Nanoparticulate Core/Shell ZrO ₂ /TiO ₂ . Materials Focus, 2017, 6, 512-516.	0.4	2
21	SYNERGISM OF V2O5 AND ZnS IN THE PHOTO-OXIDATIVE CONVERSION OF DIPHENYLAMINE ON CdO SURFACE European Chemical Bulletin, 2017, 6, 108.	2.7	О
22	ZnO-Photocatalyzed Oxidative Transformation of Diphenylamine. Synergism by TiO2, V2O5, CeO2 and ZnS. Journal of the Mexican Chemical Society, 2017, 59, .	0.6	0
23	Tri-functional Fe2O3-encased Ag-doped ZnO nanoframework: magnetically retrievable antimicrobial photocatalyst. Materials Research Express, 2016, 3, 115501.	1.6	4
24	Magnetically recoverable Fe ₃ O ₄ -implanted Ag-loaded ZnO nanoflakes for bacteria-inactivation and photocatalytic degradation of organic pollutants. New Journal of Chemistry, 2016, 40, 1845-1852.	2.8	28
25	Structural, optical and photoconductivity characteristics of pristine FeO·Fe ₂ 0 ₃ nanocomposite: aggregation induced emission enhancement of fluorescent organic nanoprobe of thiophene appended phenanthrimidazole derivative. RSC Advances. 2016. 6. 18718-18736.	3.6	8
26	Enhanced photocatalytic activity of magnetically separable bactericidal CuFe ₂ O ₄ -embedded Ag-deposited ZnO nanosheets. RSC Advances, 2016, 6, 1782-1791.	3.6	21
27	Absorption, photoluminescence and photoelectron transfer resistance of sol–gel synthesized core/shell CuO/TiO2 nanoparticles. Optik, 2016, 127, 3013-3017.	2.9	9
28	Fused Methoxynaphthyl Phenanthrimidazole Semiconductors as Functional Layer in High Efficient OLEDs. Journal of Fluorescence, 2016, 26, 307-316.	2.5	2
29	Optical and theoretical studies on Fe ₃ O ₄ –imidazole nanocomposite and clusters. New Journal of Chemistry, 2015, 39, 3801-3812.	2.8	15
30	Absorption, emission, charge transfer resistance and photocatalytic activity of Al2O3/TiO2 core/shell nanoparticles. Superlattices and Microstructures, 2015, 83, 659-667.	3.1	18
31	Thermodynamically feasible photoelectron transfer from bioactive π-expanded imidazole luminophores to ZnO nanocrystals. New Journal of Chemistry, 2015, 39, 1800-1813.	2.8	3
32	Inhibition of fluorescence of styryl phenanthrimidazole on doping nanocrystalline ZnO with bismuth. Measurement: Journal of the International Measurement Confederation, 2015, 65, 129-134.	5.0	1
33	Enhancement of TiO2-photocatalyzed organic transformation by ZnO and ZnS. Oxidation of diphenylamine. Egyptian Journal of Basic and Applied Sciences, 2015, 2, 32-38.	0.6	2
34	Enhancing photoresponse of ionic liquid–ZnO composite: Molecular docking study. Sensors and Actuators B: Chemical, 2015, 220, 814-821.	7.8	4
35	Photoinduced oxidative transformation of diphenylamine on CeO2. Journal of Taibah University for Science, 2015, 9, 513-520.	2.5	0
36	Photoinduced oxidative transformation of diphenylamine on Al2O3 with enhancement by ZnO synergism. Karbala International Journal of Modern Science, 2015, 1, 32-38.	1.0	1

#	Article	lF	Citations
37	Understanding the binding interaction of imidazole with ZnO nanomaterials and clusters. RSC Advances, 2015, 5, 9518-9531.	3.6	14
38	Synthesis of Nanoparticulate Inâ€Doped BiVO ₄ for Enhanced Visibleâ€Light Photocatalytic Degradation of Dye. International Journal of Applied Ceramic Technology, 2015, 12, 711-721.	2.1	8
39	Binding interaction between 2-(naphthalen-1-yl)-1-p-tolyl-1H-phenanthro[9,10-d]imidazole and semiconductor nanomaterials. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 136, 1428-1433.	3.9	O
40	Enhancing the photoluminescence of 1-(naphthalene-1-yl)-2,4,5-triphenyl-1H-imidazole anchored to superparamagnetic nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 135, 1169-1172.	3.9	2
41	Turn-off of fluorescence of styryl phenanthrimidazole on doping ZnO nanoparticles with Ce3+. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 135, 264-269.	3.9	5
42	Donor–acceptor binding interaction of 1-(naphthalene-1-yl)-2,4,5-triphenyl-1H-imidazole with semiconductor nanomaterials. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 137, 333-337.	3.9	0
43	Particulate sol–gel synthesis and optical and electrical properties of CeO2/TiO2 nanocomposite. Journal of the Iranian Chemical Society, 2015, 12, 75-80.	2.2	13
44	Light-induced oxidative transformation of diphenylamine on ZrO2. Synergism by ZnO and ZnS. Journal of the Serbian Chemical Society, 2015, 80, 1411-1421.	0.8	0
45	Benzimidazole based Ir(III) picolinate complexes as emitting materials and the fluorescent behavior of benzimidazole bound to Mn–TiO ₂ @ZnO core/shell nanospheres. Materials Express, 2014, 4, 279-292.	0.5	10
46	Electrical, optical, and visible light-photocatalytic properties of zirconium-doped BiVO ₄ nanoparticles. Materials Express, 2014, 4, 125-134.	0.5	16
47	Nonquenching of Charge Carriers by Fe ₃ O ₄ Core in Fe ₃ O ₄ /ZnO Nanosheet Photocatalyst. Langmuir, 2014, 30, 15031-15039.	3.5	92
48	V ₂ O ₅ -Photocatalyzed Oxidation of Diphenylamine. Materials Science Forum, 2014, 807, 81-90.	0.3	0
49	Magnetically separable CdSâ€deposited Fe ₃ O ₄ â€implanted ZnO microrods for solar photocatalysis. Micro and Nano Letters, 2014, 9, 529-531.	1.3	5
50	Electrical, optical and visible light-photocatalytic properties of monoclinic BiVO4 nanoparticles synthesized hydrothermally at different pH. Materials Science in Semiconductor Processing, 2014, 21, 122-131.	4.0	28
51	Characterization and electronic spectral studies of 2-(naphthalen-1-yl)-4,5-diphenyl-1H-imidazole bound Fe2O3 nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 120, 84-87.	3.9	3
52	Electrical, optical, photocatalytic, and bactericidal properties of polyethylene glycol-assisted sol–gel synthesized ZnTiO3-implanted ZnO nanoparticles. Materials Research Express, 2014, 1, 045019.	1.6	6
53	Nano rutile TiO2 catalysed synthesis of (E)-4-(2-(1-(4-chlorophenyl)-1H-phenanthro[9,10-d]imidazol-2-yl)vinyl)-N,N-dimethylaniline and its interaction with super paramagnetic nanoparticles. RSC Advances, 2014, 4, 62144-62152.	3.6	3
54	Spectroscopic Studies on Photoelectron Transfer from 2-(furan-2-yl)-1-phenyl-1H-phenanthro[9,10-d]imidazole to ZnO, Cu—doped ZnO and Ag—doped ZnO. Journal of Fluorescence, 2014, 24, 1447-1455.	2.5	1

#	Article	IF	Citations
55	Styryl phenanthrimidazole-fluorescence switched on by core/shell BaTiO3/ZnO and Mn-doped TiO2/ZnO nanospheres and switched off by the core nanoparticles. RSC Advances, 2014, 4, 59908-59916.	3.6	4
56	Binding and fluorescence enhancing behaviour of phenanthrimidazole with different phases of TiO2. New Journal of Chemistry, 2014, 38, 4321.	2.8	7
57	Enhanced visible light-photocatalysis by hydrothermally synthesized thallium-doped bismuth vanadate nanoparticles. Materials Science in Semiconductor Processing, 2014, 27, 352-361.	4.0	18
58	Nano ZnO, Cu-doped ZnO, and Ag-doped ZnO assisted generation of light from imidazole. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 295, 1-10.	3.9	22
59	Optical, electrical, and photocatalytic properties of polyethylene glycol-assisted sol–gel synthesized BaTiO3@ZnO core–shell nanoparticles. Powder Technology, 2014, 254, 480-487.	4.2	21
60	Enhancing photoluminescent behavior of 2-(naphthalen-1-yl)-1,4,5-triphenyl-1H-imidazole by ZnO and Bi2O3. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 118, 182-186.	3.9	19
61	Optical, electrical and visible light-photocatalytic properties of yttrium-substituted BiVO4 nanoparticles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 187, 53-60.	3.5	14
62	Optical, electrical and visible light-photocatalytic properties of hydrothermally synthesized amorphous BiVO4 nanoparticles. Materials Letters, 2014, 122, 21-24.	2.6	15
63	Photocatalytic bacteria inactivation by polyethylene glycol-assisted sol–gel synthesized Cd-doped TiO2 under visible light. Research on Chemical Intermediates, 2013, 39, 1437-1446.	2.7	7
64	Fe3O4/SnO2 nanocomposite: Hydrothermal and sonochemical synthesis, characterization, and visible-light photocatalytic and bactericidal activities. Powder Technology, 2013, 246, 635-642.	4.2	34
65	Nanostructures and optical, electrical, magnetic, and photocatalytic properties of hydrothermally and sonochemically prepared CuFe2O4/SnO2. RSC Advances, 2013, 3, 16728.	3.6	45
66	Solar Photocatalytic Disinfection of Bacteria., 2013,, 243-262.		0
67	Microwave, sonochemical and combustion synthesized CuO nanostructures and their electrical and bactericidal properties. Journal of Alloys and Compounds, 2013, 580, 570-577.	5 . 5	36
68	Electrical, optical and photocatalytic properties of polyethylene glycol-assisted sol–gel synthesized Mn-doped TiO2/ZnO core–shell nanoparticles. Superlattices and Microstructures, 2013, 64, 569-580.	3.1	24
69	Photoinduced electron-transfer from benzimidazole to nanocrystals. Journal of Molecular Liquids, 2013, 177, 295-300.	4.9	9
70	Electrical and optical properties of polyethylene glycol-assisted sol–gel solid state reaction-synthesized nanostructured CdTiO3. Materials Science in Semiconductor Processing, 2013, 16, 1992-1996.	4.0	13
71	Solvothermal Synthesis of CeO ₂ â€"TiO ₂ Nanocomposite for Visible Light Photocatalytic Detoxification of Cyanide. ACS Sustainable Chemistry and Engineering, 2013, 1, 1555-1563.	6.7	97
72	The enhanced photocatalytic and bactericidal activities of carbon microsphere-assisted solvothermally synthesized cocoon-shaped Sn4+-doped ZnO nanoparticles. Dalton Transactions, 2013, 42, 13855.	3.3	34

#	Article	IF	CITATIONS
73	Microstructures and optical, electrical and photocatalytic properties of sonochemically and hydrothermally synthesized SnO2 nanoparticles. Journal of Alloys and Compounds, 2013, 549, 269-275.	5.5	36
74	Photoinduced electron transfer from phenanthroimidazole to nano WO3, CuO ZrO2 and Al2O3. LUMO $\hat{a}\in$ CB energy binding efficiency relationship. Measurement: Journal of the International Measurement Confederation, 2013, 46, 3261-3267.	5.0	5
75	Benzimidazole: Dramatic luminescence turn-on by ZnO nanocrystals. Measurement: Journal of the International Measurement Confederation, 2013, 46, 3883-3886.	5.0	17
76	Contrasting emission behaviour of phenanthroimidazole with ZnO nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 115, 488-492.	3.9	8
77	Benzimidazole derivative vs. different phases of TiO2-physico-chemical approach. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 114, 303-308.	3.9	9
78	Fluorescence enhancing and quenching of TiO2 by benzimidazole. Sensors and Actuators B: Chemical, 2013, 188, 207-211.	7.8	27
79	Fluorescence quenching of organic molecule by insulator. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 112, 417-421.	3.9	15
80	Photocatalytic Activities of CdO-Fe ₂ O ₃ , CdO-CuFe ₂ O ₄ and CdO-ZnFe ₂ O ₄ Nanocomposites. Materials Science Forum, 2013, 764, 206-218.	0.3	3
81	Photoinduced electron transfer from benzimidazole to nano WO3, CuO and Fe2O3. A new approach on LUMO–CB energy-binding efficiency relationship. Sensors and Actuators B: Chemical, 2013, 182, 514-520.	7.8	22
82	Contrasting emission behavior of phenanthroimidazole with rutile and anatase TiO2 nanoparticles. Journal of Luminescence, 2013, 138, 235-241.	3.1	15
83	Optical, Electrical, and Photocatalytic Characteristics ofÂSol-Gel–Derived CuO-TiO2 Nanocomposite. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2013, 43, 19-23.	0.6	3
84	Photocatalytic and bactericidal activities of hydrothermally and sonochemically prepared Fe2O3–SnO2 nanoparticles. Materials Science in Semiconductor Processing, 2013, 16, 818-824.	4.0	23
85	Electronic properties of phenanthrimidazoles as hole transport materials in organic light emitting devices and in photoelectron transfer to ZnO nanoparticles. Journal of Physical Organic Chemistry, 2013, 26, 386-406.	1.9	10
86	Interaction of fluorescent sensor with superparamagnetic iron oxide nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 110, 151-156.	3.9	17
87	Hydrothermal and sonochemical preparation and photocatalytic and bactericidal activities of ZnFe2O4–SnO2 nanocomposite. Superlattices and Microstructures, 2013, 60, 487-499.	3.1	12
88	CuO Nanoparticles with Leaf-Like Microstructureâ€"A Powerful Nonenzymatic Glucose Sensor. Sensor Letters, 2013, 11, 1478-1483.	0.4	1
89	Hot-Injection Synthesis of Bactericidal Sn-Doped TiO ₂ Nanospheres for Visible-Light Photocatalysis. Materials Express, 2012, 2, 319-326.	0.5	12
90	Inhibition of fluorescence enhancement of benzimidazole derivative on doping ZnO with Cu and Ag. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 247, 16-23.	3.9	28

#	Article	IF	CITATIONS
91	Lack of enhanced photocatalytic formation of iodine on particulate semiconductor mixtures. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 98, 460-465.	3.9	6
92	Photosensitization of Imidazole Derivative by ZnO Nanoparticle. Journal of Fluorescence, 2012, 22, 1047-1053.	2.5	18
93	Photoinduced electron-transfer from imidazole derivative to nano-semiconductors. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 89, 187-193.	3.9	20
94	Phenol-photodegradation on ZrO2. Enhancement by semiconductors. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 92, 201-206.	3.9	24
95	Sensing rutile TiO2 through fluorescence of imidazole derivative. Sensors and Actuators B: Chemical, 2012, 168, 263-270.	7.8	25
96	Photocatalytic and bactericidal activities of hydrothermally synthesized nanocrystalline Cd-doped ZnO. Superlattices and Microstructures, 2012, 51, 443-453.	3.1	57
97	Efficient Photocatalytic Degradation of Salicylic Acid by Bactericidal ZnO. Journal of the Korean Chemical Society, 2012, 56, 108-114.	0.2	4
98	Visible light photocatalytic disinfection of bacteria by Cd–TiO2. Catalysis Communications, 2011, 12, 826-829.	3.3	56
99	Photodeposited Surface Ag on ZnO Nanocrystals and the Optical, Electrical, Photocatalytic, and Bactericidal Properties. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2011, 41, 369-375.	0.6	13
100	NiO/TiO2 Nanoparticles for Photocatalytic Disinfection of Bacteria under Visible Light. Journal of the American Ceramic Society, 2011, 94, 2499-2505.	3.8	30
101	Optical, electrical, photocatalytic, and bactericidal properties of microwave synthesized nanocrystalline Ag–ZnO and ZnO. Solid State Sciences, 2011, 13, 923-928.	3.2	128
102	Preparation and characterization of ZnO–TiO2 nanocomposite for photocatalytic disinfection of bacteria and detoxification of cyanide under visible light. Materials Research Bulletin, 2011, 46, 1586-1592.	5.2	78
103	Solar photocatalytic detoxification of cyanide by different forms of TiO2. Korean Journal of Chemical Engineering, 2011, 28, 1214-1220.	2.7	13
104	Photoproduction of iodine with nanoparticulate semiconductors and insulators. Chemistry Central Journal, 2011, 5, 31.	2.6	50
105	Enhanced photocatalytic and antibacterial activities of sol–gel synthesized ZnO and Ag-ZnO. Materials Science in Semiconductor Processing, 2011, 14, 133-138.	4.0	125
106	Combustion synthesis of ZnO and Ag-doped ZnO and their bactericidal and photocatalytic activities. Superlattices and Microstructures, 2011, 50, 234-241.	3.1	58
107	Photocatalytic degradation of 1-naphthol by oxide ceramics with added bacterial disinfection. Journal of Hazardous Materials, 2010, 181, 708-715.	12.4	32
108	Kinetics of Ag/TiO2-photocatalyzed iodide ion oxidation. Monatshefte Für Chemie, 2010, 141, 529-537.	1.8	11

#	Article	IF	CITATIONS
109	Photomineralization of phenol on Al2O3: synergistic photocatalysis by semiconductors. Research on Chemical Intermediates, 2010, 36, 361-371.	2.7	13
110	Preparation and characterization of antimicrobial Ce-doped ZnO nanoparticles for photocatalytic detoxification of cyanide. Materials Chemistry and Physics, 2010, 123, 585-594.	4.0	173
111	Cu-doped TiO2 nanoparticles for photocatalytic disinfection of bacteria under visible light. Journal of Colloid and Interface Science, 2010, 352, 68-74.	9.4	189
112	Enhanced phenol-photodegradation by particulate semiconductor mixtures: Interparticle electron-jump. Journal of Hazardous Materials, 2010, 176, 799-806.	12.4	52
113	Solar-powered potentially induced TiO2, ZnO and SnO2-catalyzed iodine generation. Solar Energy Materials and Solar Cells, 2010, 94, 900-906.	6.2	14
114	Antibacterial and photocatalytic activities of sonochemically prepared ZnO and Ag–ZnO. Journal of Alloys and Compounds, 2010, 508, 587-591.	5.5	110
115	Substituent effect on nano TiO ₂ ―and ZnO atalyzed phenol photodegradation rates. International Journal of Chemical Kinetics, 2009, 41, 275-283.	1.6	20
116	Semiconductorâ€photocatalyzed degradation of carboxylic acids: Enhancement by particulate semiconductor mixture. International Journal of Chemical Kinetics, 2009, 41, 716-726.	1.6	11
117	Photoreduction of chromium(VI) on ZrO2 and ZnS surfaces. Monatshefte Für Chemie, 2009, 140, 1269-1274.	1.8	17
118	Photooxidation of Oxalic Acid on Sm2O3: Synergism by Semiconductors. Catalysis Letters, 2009, 130, 222-226.	2.6	2
119	Synthesis and Characterization of Rare Earth Orthovanadate (RVO4; RÂ=ÂLa, Ce, Nd, Sm, Eu & Gd) Nanorods/Nanocrystals/Nanospindles by a Facile Sonochemical Method and Their Catalytic Properties. Journal of Cluster Science, 2009, 20, 291-305.	3.3	118
120	Photodegradation of phenol on Y2O3 surfaceSynergism by semiconductors. Journal of Hazardous Materials, 2009, 167, 664-668.	12.4	16
121	Phenol degradation on Pr6O11 surface under UV-A light. Synergistic photocatalysis by semiconductors. Radiation Physics and Chemistry, 2009, 78, 8-12.	2.8	16
122	Degradation of carboxylic acids on Y2O3 surface under UV light. Synergism by semiconductors. Radiation Physics and Chemistry, 2009, 78, 173-176.	2.8	5
123	Photodegradation of carboxylic acids on Pr6O11 surface. Enhancement by semiconductors. Chemical Engineering Journal, 2009, 151, 46-50.	12.7	6
124	Selectivity in photocatalysis by particulate semiconductors. Open Chemistry, 2009, 7, 134-137.	1.9	17
125	Solar-driven electrochemically assisted semiconductor-catalyzed iodide ion oxidation. Enhanced efficiency by oxide mixtures. Open Chemistry, 2009, 7, 519-523.	1.9	3
126	Photooxidation of iodide ion on immobilized semiconductor powders. Solar Energy Materials and Solar Cells, 2008, 92, 490-494.	6.2	22

#	Article	IF	Citations
127	Photocatalytic performance of particulate semiconductors under natural sunshine—Oxidation of carboxylic acids. Solar Energy Materials and Solar Cells, 2008, 92, 588-593.	6.2	47
128	Semiconductor-catalyzed degradation of phenols with sunlight. Solar Energy Materials and Solar Cells, 2008, 92, 1315-1321.	6.2	112
129	Semiconductor-catalyzed solar photooxidation of iodide ion. Journal of Molecular Catalysis A, 2007, 265, 153-158.	4.8	41
130	Mo(VI)-catalysis of perborate oxidation in acetic acid: Oxidation of dimethyl and dibenzyl sulfoxides. Catalysis Communications, 2006, 7, 236-239.	3.3	11
131	Fe2O3-photocatalysis with sunlight and UV light: Oxidation of aniline. Electrochemistry Communications, 2006, 8, 95-101.	4.7	98
132	Solar photooxidation of diphenylamine. Solar Energy Materials and Solar Cells, 2006, 90, 1928-1935.	6.2	9
133	Mo(Vi)-Catalysis of Perborate Oxidation of Aryl Sulfides in Acetic Acid. Journal of Chemical Research, 2006, 2006, 254-256.	1.3	3
134	Inhibition of photooxidation of iron(II) by some semiconductors. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 170, 233-238.	3.9	5
135	TiO2â€"photocatalyzed oxidation of aniline. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 172, 207-213.	3.9	41
136	Photocatalysis with ZrO2: oxidation of aniline. Journal of Molecular Catalysis A, 2005, 233, 1-8.	4.8	100
137	Vanadia-catalyzed solar photooxidation of aniline. Journal of Colloid and Interface Science, 2005, 289, 466-471.	9.4	40
138	Solar photocatalysis: oxidation of aniline on CdS. Solar Energy, 2005, 79, 505-512.	6.1	46
139	Solar photooxidation of aniline on ZnO surfaces. Solar Energy Materials and Solar Cells, 2005, 89, 391-402.	6.2	29
140	Mitochondria superoxide dismutase mimetic inhibits peroxide-induced oxidative damage and apoptosis: Role of mitochondrial superoxide. Free Radical Biology and Medicine, 2005, 39, 567-583.	2.9	180
141	Similar substituent effects in the oxidations of primary aliphatic alcohols with dichromates and halochromates of heterocyclic bases. International Journal of Chemical Kinetics, 2005, 37, 5-9.	1.6	7
142	Photooxidation of aniline on alumina with sunlight and artificial UV light. Catalysis Communications, 2005, 6, 159-165.	3.3	28
143	Identical kinetic behavior of dichromates and halochromates of heterocyclic bases: oxidations of pentan-1-ol. Journal of Physical Organic Chemistry, 2004, 17, 88-93.	1.9	11
144	Synthesis, X-ray crystal structure, antimicrobial activity and photodynamic effects of some thiabendazole complexes. Journal of Inorganic Biochemistry, 2004, 98, 322-332.	3.5	55

#	Article	IF	CITATIONS
145	Photooxidation of iodide ion on some semiconductor and non-semiconductor surfaces. Catalysis Communications, 2004, 5, 283-290.	3.3	37
146	Kinetic Evidence of Perborate Oxidation of Nâ€Methylaniline in Acetic Acid as Borate Assisted Hydrogen Peroxide Oxidation. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2004, 34, 541-551.	1.8	0
147	Kinetic evidence of a common mechanism in the oxidations of diethyl sulfide by dichromates and halochromates of heterocyclic bases. International Journal of Chemical Kinetics, 2003, 35, 1-8.	1.6	8
148	Single crystal EPR of Cu(II) doped [Co(tbz)2(NO3)(H2O)]NO3: probe into copper–thiabendazole interaction. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2003, 59, 3337-3345.	3.9	18
149	X-ray Image Analysis to Detect Infestations Caused by Insects in Grain. Cereal Chemistry, 2003, 80, 553-557.	2.2	42
150	EPR of an exchange-coupled, hydrogen-bridged one-dimensional Cu(II) complex containing both octahedral and square pyramidal geometries in the same unit cell. Molecular Physics, 2002, 100, 287-295.	1.7	8
151	Structureâ-'Reactivity Correlation of Anilines in Acetic Acid. Journal of Organic Chemistry, 2002, 67, 1118-1124.	3.2	26
152	Mechanism and reactivity in perborate oxidation of anilines in acetic acid. Perkin Transactions II RSC, 2002, , 2011-2018.	1,1	18
153	Supramolecular self-assemblyviainter-ligands hydrogen bonds in [Cu(H2O)2(NO3)2(tb)] (tb is) Tj ETQq1 1 0.784	314 rgBT 0.2	/Oyerlock 10
154	Kinetic Studies on the Oxidation of Organic Sulfides with Percarbonate in Acetic Acid. Reaction Kinetics and Catalysis Letters, 2002, 76, 37-42.	0.6	7
155	Linear free energy relationships in the chromium(VI) oxidation of sulfides in acetonitrile. Reaction Kinetics and Catalysis Letters, 2002, 77, 139-145.	0.6	0
156	Effect of high pressure and temperature on nanocrystalline Fe2O3and TiO2. High Pressure Research, 2001, 21, 79-92.	1.2	5
157	Generation of peracetic acid on aging of perborate solution in acetic acid: Kinetics of oxidation of organic sulfides. Journal of Chemical Research, 2001, 2001, 398-400.	1.3	2
158	Kinetics of the Oxidation of Fluoren-9-olsby 4-Nitro-1-chlorobenzotriazole. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2001, 132, 799-804.	1.8	2
159	Autocatalysis in the sodium perborate oxidation of anilines in acetic acid–ethylene glycol. Journal of Molecular Catalysis A, 2001, 172, 9-17.	4.8	13
160	EPR of Cu(II)-doped seven-coordinate inclusion compounds, M(stpy)3(NO3)2·1/2stpy (M=Cd(II) and Zn(II),) Tj E - Part A: Molecular and Biomolecular Spectroscopy, 2001, 57, 441-449.	TQq0 0 0 3.9	rgBT /Overloo 14
161	Safe storage time of high moisture wheat. Journal of Stored Products Research, 2001, 37, 303-312.	2.6	62
162	FORMATION OF PERACETIC ACID ON AGING OF PERBORATE SOLUTIONS IN ACETIC ACID: KINETICS OF THE OXIDATION OF MORPHOLINE ANDN-METHYLMORPHOLINE. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2001, 31, 31-41.	1.8	2

#	Article	IF	CITATIONS
163	On the Mechanism of the Perborate Oxidation of Organic Sulfides in Glacial Acetic Acid. European Journal of Organic Chemistry, 2000, 2000, 3261-3263.	2.4	12
164	Synthesis, X-ray crystal structure and spectroscopy of a Werner-type host Co(II) complex, trans -bisisothiocyanatotetrakis(trans -4-styrylpyridine)cobalt(II). Journal of Molecular Structure, 2000, 523, 213-221.	3.6	8
165	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2000, 38, 233-249.	1.6	9
166	Title is missing!. Journal of Chemical Crystallography, 2000, 30, 351-357.	1.1	6
167	Lack of Linear Free Energy Relationships in the p-Toluenesulfonic Acid Mediated Chromium(VI) Oxidation of Organic Sulfides. Monatshefte Fýr Chemie, 2000, 131, 1123-1128.	1.8	6
168	Formation of Peracetic Acid upon Aging of Perborate in Acetic Acid. Kinetics of the Oxidation of S-Phenylmercaptoacetic Acids. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2000, 131, 1025-1029.	1.8	4
169	Title is missing!. Journal of Chemical Crystallography, 1999, 29, 413-420.	1.1	17
170	Evidence of a Common Mechanism in the Oxidation by Chromium(VI) Complexes: Kinetics of Oxidation of Diphenyl Sulfide. Monatshefte $F\tilde{A}\frac{1}{4}r$ Chemie, 1999, 130, 1461-1464.	1.8	9
171	Lack of linear free energy relationship: Tungsten(VI) catalyzed perborate oxidation of anilines. International Journal of Chemical Kinetics, 1999, 31, 571-575.	1.6	14
172	Linear free energy relationship in complex reaction: Tungsten(VI) catalyzed perborate oxidation of S-Phenylmercaptoacetic acids. International Journal of Chemical Kinetics, 1999, 31, 675-681.	1.6	15
173	New polymorphs of alumina. High Pressure Research, 1999, 16, 147-160.	1.2	5
174	Peroxoborate Anion as Active Oxidant in Perborate Oxidation: Kinetics of the Oxidation of Morpholine and N-Methylmorpholine. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 1999, 29, 1463-1474.	1.8	10
175	New polymorphs of alumina: Part II \hat{l} and \hat{l} » alumina. High Pressure Research, 1999, 16, 265-278.	1.2	6
176	Kinetic Evidence for (N,N-Dimethylaniline)-Oxodiperoxomolybdenum(VI) or Tungsten(VI) as Oxidizing Species in Molybdenum(VI) or Tungsten(VI) Catalyzed Hydrogen Peroxide (Perborate) Oxidation of N,N-Dimethylaniline. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 1998, 28, 1115-1125.	1.8	13
177	Zirconium(IV) catalysis in perborate oxidation of iodide. Reaction Kinetics and Catalysis Letters, 1997, 60, 387-394.	0.6	13
178	High pressure studies of cvt grown cuins2single crystals. High Pressure Research, 1996, 15, 159-166.	1.2	4
179	Molybdenum(VI) catalysis of perborate or hydrogen peroxide oxidation of iodide ion. Transition Metal Chemistry, 1995, 20, 460-462.	1.4	32
180	Acid catalysis in the N-bromosuccinimide-propargyl alcohol reaction. Reaction Kinetics and Catalysis Letters, 1994, 53, 191-196.	0.6	0

#	Article	IF	CITATIONS
181	Kinetics and mechanism of perborate oxidation of organic sulphides. Tetrahedron, 1991, 47, 8733-8738.	1.9	22
182	Low temperature and high-pressure resistivity studies on TiBX alloy. High Pressure Research, 1990, 3, 189-191.	1.2	1
183	Methoxybromination of Cinnamic Acid byN-Bromosuccinimide. Bulletin of the Chemical Society of Japan, 1990, 63, 2404-2407.	3.2	5
184	Contrasting kinetic behaviour of allyl and crotyl alcohols towardsN-bromosuccinimide in aqueous methanol. Journal of Physical Organic Chemistry, 1990, 3, 235-238.	1.9	11
185	Kinetics of perborate oxidation of quinol. Reaction Kinetics and Catalysis Letters, 1989, 40, 369-374.	0.6	7
186	Kinetics and mechanism of oxidation of allyl alcohol by N-bromosuccinimide. Monatshefte Fýr Chemie, 1982, 113, 1239-1244.	1.8	5
187	X-ray image analysis to detect infestation due to Cryptolestes ferrugineus in stored wheat. , 0, , .		1
188	Photocatalytic Degradation of Dyes by Al ₃ -TiO ₂ and ZrO ₂ -TiO _{Nanocomposites. Materials Science Forum, 0, 734, 325-333.}	0.3	10
189	Photocatalytic Activity of Sol-Gel Derived Bi ₂ 0 ₃ -TiO ₂ Nanocomposite. Materials Science Forum, 0, 712, 73-83.	0.3	1
190	Microwave Synthesized CuO Nanoleaves as Nonenzymatic Glucose Sensor. Key Engineering Materials, 0, 543, 76-79.	0.4	1