Amit S Kalgutkar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2251496/publications.pdf Version: 2024-02-01

	81900	56724
7,424	39	83
citations	h-index	g-index
115	115	7037
docs citations	times ranked	citing authors
	citations 115	7,42439citationsh-index115115

AMIT S KALCHTKAD

#	Article	IF	CITATIONS
1	Future of Biotransformation Science in the Pharmaceutical Industry. Drug Metabolism and Disposition, 2022, 50, 258-267.	3.3	8
2	Chemical Research in Toxicology at 35: Recognizing the Impact of Professor Larry Marnett. Chemical Research in Toxicology, 2022, , .	3.3	0
3	Disposition of Nirmatrelvir, an Orally Bioavailable Inhibitor of SARS-CoV-2 3C-Like Protease, across Animals and Humans. Drug Metabolism and Disposition, 2022, 50, 576-590.	3.3	64
4	Practical and Science-Based Strategy for Establishing Acceptable Intakes for Drug Product <i>N</i> -Nitrosamine Impurities. Chemical Research in Toxicology, 2022, 35, 475-489.	3.3	36
5	Pharmacokinetics, Mass Balance, Metabolism, and Excretion of the Liver-Targeted Acetyl-CoA Carboxylase Inhibitor PF-05221304 (Clesacostat) in Humans. Xenobiotica, 2022, , 1-45.	1.1	1
6	Comprehensive Nonclinical Safety Assessment of Nirmatrelvir Supporting Timely Development of the SARS-COV-2 Antiviral Therapeutic, Paxlovidâ,,¢. International Journal of Toxicology, 2022, 41, 276-290.	1.2	9
7	A Small-Molecule Oral Agonist of the Human Glucagon-like Peptide-1 Receptor. Journal of Medicinal Chemistry, 2022, 65, 8208-8226.	6.4	42
8	Biotransformation novel advances – 2021 year in review. Drug Metabolism Reviews, 2022, 54, 207-245.	3.6	3
9	Transporter-Enzyme Interplay in the Pharmacokinetics of PF-06835919, a First-In-Class Ketohexokinase Inhibitor for Metabolic Disorders and Nonalcoholic Fatty Liver Disease. Drug Metabolism and Disposition, 2022, 50, 1312-1321.	3.3	3
10	Organic Anion–Transporting Polypeptide 1B1/1B3–Mediated Hepatic Uptake Determines the Pharmacokinetics of Large Lipophilic Acids: In Vitro–In Vivo Evaluation in Cynomolgus Monkey. Journal of Pharmacology and Experimental Therapeutics, 2021, 377, 169-180.	2.5	12
11	Novel advances in biotransformation and bioactivation research – 2020 year in review. Drug Metabolism Reviews, 2021, 53, 384-433.	3.6	4
12	The 2 nd Alpine Winter Conference on Medicinal and Synthetic Chemistry. ChemMedChem, 2021, 16, 2417-2423.	3.2	0
13	An oral SARS-CoV-2 M ^{pro} inhibitor clinical candidate for the treatment of COVID-19. Science, 2021, 374, 1586-1593.	12.6	1,074
14	Designing around Structural Alerts in Drug Discovery. Journal of Medicinal Chemistry, 2020, 63, 6276-6302.	6.4	90
15	Structural attributes influencing unbound tissue distribution. European Journal of Medicinal Chemistry, 2020, 185, 111813.	5.5	19
16	Predicting the Human Hepatic Clearance of Acidic and Zwitterionic Drugs. Journal of Medicinal Chemistry, 2020, 63, 11831-11844.	6.4	14
17	Discovery of PF-06835919: A Potent Inhibitor of Ketohexokinase (KHK) for the Treatment of Metabolic Disorders Driven by the Overconsumption of Fructose. Journal of Medicinal Chemistry, 2020, 63, 13546-13560.	6.4	43
18	Optimizing the Benefit/Risk of Acetyl-CoA Carboxylase Inhibitors through Liver Targeting. Journal of Medicinal Chemistry, 2020, 63, 10879-10896.	6.4	19

#	Article	IF	CITATIONS
19	Effective Application of Metabolite Profiling in Drug Design and Discovery. Journal of Medicinal Chemistry, 2020, 63, 6387-6406.	6.4	25
20	Is there enough evidence to classify cycloalkyl amine substituents as structural alerts?. Biochemical Pharmacology, 2020, 174, 113796.	4.4	11
21	Nicotinic acid transport into human liver involves organic anion transporter 2 (SLC22A7). Biochemical Pharmacology, 2020, 174, 113829.	4.4	22
22	Myeloperoxidase inhibition in mice alters atherosclerotic lesion composition. PLoS ONE, 2019, 14, e0214150.	2.5	30
23	Metabolism and excretion of (PF-04991532), a hepatoselective glucokinase activator, in humans: confirmation of the MIST potential	1.1	2
24	noted in first-in-Human metabolite scouting studies. Xenobiotica. 2019. 49. 1447-1457. Optimization of Metabolic and Renal Clearance in a Series of Indole Acid Direct Activators of 5â€2-Adenosine Monophosphate-Activated Protein Kinase (AMPK). Journal of Medicinal Chemistry, 2018, 61, 2372-2383.	6.4	13
25	Activation of Liver AMPK with PF-06409577 Corrects NAFLD and Lowers Cholesterol in Rodent and Primate Preclinical Models. EBioMedicine, 2018, 31, 122-132.	6.1	99
26	Establishing Transcriptional Signatures to Differentiate PXR-, CAR-, and AhR-Mediated Regulation of Drug Metabolism and Transport Genes in Cryopreserved Human Hepatocytes. Journal of Pharmacology and Experimental Therapeutics, 2018, 365, 262-271.	2.5	46
27	A sensitive method for the quantitation of the peptide-based glucagon-like peptide-1 receptor agonist liraglutide in plasma using microfluidics chromatography tandem MS. Bioanalysis, 2018, 10, 357-368.	1.5	4
28	Induction of human cytochrome P450 3A4 by the irreversible myeloperoxidase inactivator PF-06282999 is mediated by the pregnane X receptor. Xenobiotica, 2018, 48, 647-655.	1.1	8
29	6-Chloro-5-[4-(1-Hydroxycyclobutyl)Phenyl]-1 <i>H</i> -Indole-3-Carboxylic Acid is a Highly Selective Substrate for Glucuronidation by UGT1A1, Relative to <i>β</i> -Estradiol. Drug Metabolism and Disposition, 2018, 46, 1836-1846.	3.3	2
30	Acyl Glucuronide Metabolites of 6-Chloro-5-[4-(1-hydroxycyclobutyl)phenyl]-1 <i>H</i> -indole-3-carboxylic Acid (PF-06409577) and Related Indole-3-carboxylic Acid Derivatives are Direct Activators of Adenosine Monophosphate-Activated Protein Kinase (AMPK). Journal of Medicinal Chemistry, 2018, 61, 7273-7288.	6.4	18
31	Examination of the Human Cytochrome P4503A4 Induction Potential of PF-06282999, an Irreversible Myeloperoxidase Inactivator: Integration of Preclinical, In Silico, and Biomarker Methodologies in the Prediction of the Clinical Outcome. Drug Metabolism and Disposition, 2017, 45, 501-511.	3.3	14
32	Selective Activation of AMPK <i>β</i> 1-Containing Isoforms Improves Kidney Function in a Rat Model of Diabetic Nephropathy. Journal of Pharmacology and Experimental Therapeutics, 2017, 361, 303-311.	2.5	66
33	Liabilities Associated with the Formation of "Hard―Electrophiles in Reactive Metabolite Trapping Screens. Chemical Research in Toxicology, 2017, 30, 220-238.	3.3	24
34	Simulation of human plasma concentration–time profiles of the partial glucokinase activator PF-04937319 and its disproportionate N-demethylated metabolite using humanized chimeric mice and semi-physiological pharmacokinetic modeling. Xenobiotica, 2017, 47, 382-393.	1.1	26
35	Species Differences in the Oxidative Desulfurization of a Thiouracil-Based Irreversible Myeloperoxidase Inactivator by Flavin-Containing Monooxygenase Enzymes. Drug Metabolism and Disposition, 2016, 44, 1262-1269.	3.3	6
36	Optimization of amide-based EP3 receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2670-2675.	2.2	6

3

#	Article	IF	CITATIONS
37	Inhibition of Hepatobiliary Transport Activity by the Antibacterial Agent Fusidic Acid: Insights into Factors Contributing to Conjugated Hyperbilirubinemia/Cholestasis. Chemical Research in Toxicology, 2016, 29, 1778-1788.	3.3	10
38	Discovery and Preclinical Characterization of 6-Chloro-5-[4-(1-hydroxycyclobutyl)phenyl]-1 <i>H</i> -indole-3-carboxylic Acid (PF-06409577), a Direct Activator of Adenosine Monophosphate-activated Protein Kinase (AMPK), for the Potential Treatment of Diabetic Nephropathy. Journal of Medicinal Chemistry, 2016, 59, 8068-8081.	6.4	98
39	The Antimicrobial Agent Fusidic Acid Inhibits Organic Anion Transporting Polypeptide-Mediated Hepatic Clearance and May Potentiate Statin-Induced Myopathy. Drug Metabolism and Disposition, 2016, 44, 692-699.	3.3	20
40	Pharmacokinetics and Disposition of the Thiouracil Derivative PF-06282999, an Orally Bioavailable, Irreversible Inactivator of Myeloperoxidase Enzyme, Across Animals and Humans. Drug Metabolism and Disposition, 2016, 44, 209-219.	3.3	25
41	Comparison of the Circulating Metabolite Profile of PF-04991532, a Hepatoselective Glucokinase Activator, Across Preclinical Species and Humans: Potential Implications in Metabolites in Safety Testing Assessment. Drug Metabolism and Disposition, 2015, 43, 190-198.	3.3	14
42	Discovery of 2-(6-(5-Chloro-2-methoxyphenyl)-4-oxo-2-thioxo-3,4-dihydropyrimidin-1(2 <i>H</i>)-yl)acetamide (PF-06282999): A Highly Selective Mechanism-Based Myeloperoxidase Inhibitor for the Treatment of Cardiovascular Diseases. Journal of Medicinal Chemistry, 2015, 58, 8513-8528.	6.4	46
43	Practical approaches to resolving reactive metabolite liabilities in early discovery. Drug Metabolism Reviews, 2015, 47, 56-70.	3.6	32
44	Predicting Toxicities of Reactive Metabolite–Positive Drug Candidates. Annual Review of Pharmacology and Toxicology, 2015, 55, 35-54.	9.4	91
45	Pharmacokinetics and metabolism studies on the glucagon-like peptide-1 (GLP-1)-derived metabolite GLP-1(9-36)amide in male Beagle dogs. Xenobiotica, 2014, 44, 842-848.	1.1	4
46	Identification of a novel, non-tetrahydroquinoline variant of the cholesteryl ester transfer protein (CETP) inhibitor torcetrapib, with improved aqueous solubility. Xenobiotica, 2014, 44, 591-605.	1.1	4
47	Metabolites in Safety Testing Assessment in Early Clinical Development: A Case Study with a Glucokinase Activator. Drug Metabolism and Disposition, 2014, 42, 1926-1939.	3.3	18
48	On the importance of synthetic organic chemistry in drug discovery: reflections on the discovery of antidiabetic agent ertugliflozin. MedChemComm, 2013, 4, 101-111.	3.4	29
49	From partial to full agonism: Identification of a novel 2,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole as a full agonist of the human GPR119 receptor. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 194-197.	2.2	22
50	Metabolism-guided drug design. MedChemComm, 2013, 4, 631.	3.4	84
51	Pharmacokinetics, Metabolism, and Excretion of the Antidiabetic Agent Ertugliflozin (PF-04971729) in Healthy Male Subjects. Drug Metabolism and Disposition, 2013, 41, 445-456.	3.3	107
52	The Role of Biotransformation Studies in Reducing Drug Attrition. Topics in Medicinal Chemistry, 2013, , 97-137.	0.8	2
53	Elucidation of the biochemical basis for a clinical drug–drug interaction between atorvastatin and 5-(<i>N</i> -(4-((4-ethylbenzyl)thio)phenyl)sulfamoyl)-2-methyl benzoic acid (CP-778 875), a subtype selective agonist of the peroxisome proliferator-activated receptor alpha. Xenobiotica, 2013, 43, 963-972.	1.1	8
54	Reactive Metabolite Trapping Studies on Imidazo- and 2-Methylimidazo[2,1- <i>b</i>]thiazole-Based Inverse Agonists of the Ghrelin Receptor. Drug Metabolism and Disposition, 2013, 41, 1375-1388.	3.3	7

#	Article	IF	CITATIONS
55	Demonstration of the Innate Electrophilicity of 4-(3-(Benzyloxy)phenyl)-2-(ethylsulfinyl)-6-(trifluoromethyl)pyrimidine (BETP), a Small-Molecule Positive Allosteric Modulator of the Glucagon-Like Peptide-1 Receptor. Drug Metabolism and Disposition, 2013, 41, 1470-1479.	3.3	20
56	In Vitro Metabolism of the Glucagon-Like Peptide-1 (GLP-1)–Derived Metabolites GLP-1(9-36)amide and GLP-1(28-36)amide in Mouse and Human Hepatocytes. Drug Metabolism and Disposition, 2013, 41, 2148-2157.	3.3	29
57	Drug discovery for a new generation of covalent drugs. Expert Opinion on Drug Discovery, 2012, 7, 561-581.	5.0	140
58	Metabolic activation in drug-induced liver injury. Drug Metabolism Reviews, 2012, 44, 18-33.	3.6	101
59	Mechanism-Based Inactivation (MBI) of Cytochrome P450 Enzymes: Structure–Activity Relationships and Discovery Strategies To Mitigate Drug–Drug Interaction Risks. Journal of Medicinal Chemistry, 2012, 55, 4896-4933.	6.4	176
60	Preclinical Species and Human Disposition of PF-04971729, a Selective Inhibitor of the Sodium-Dependent Glucose Cotransporter 2 and Clinical Candidate for the Treatment of Type 2 Diabetes Mellitus. Drug Metabolism and Disposition, 2011, 39, 1609-1619.	3.3	63
61	Intrinsic Electrophilicity of a 4-Substituted-5-cyano-6-(2-methylpyridin-3-yloxy)pyrimidine Derivative: Structural Characterization of Glutathione Conjugates in Vitro. Chemical Research in Toxicology, 2011, 24, 269-278.	3.3	18
62	Discovery of a Clinical Candidate from the Structurally Unique Dioxa-bicyclo[3.2.1]octane Class of Sodium-Dependent Glucose Cotransporter 2 Inhibitors. Journal of Medicinal Chemistry, 2011, 54, 2952-2960.	6.4	112
63	Handling reactive metabolite positives in drug discovery: What has retrospective structure–toxicity analyses taught us?. Chemico-Biological Interactions, 2011, 192, 46-55.	4.0	17
64	Oxidative Metabolism of a Quinoxaline Derivative by Xanthine Oxidase in Rodent Plasma. Chemical Research in Toxicology, 2011, 24, 2207-2216.	3.3	22
65	Pharmacodynamic Model of Parathyroid Hormone Modulation by a Negative Allosteric Modulator of the Calcium-Sensing Receptor. AAPS Journal, 2011, 13, 265-273.	4.4	9
66	Structural Alert/Reactive Metabolite Concept as Applied in Medicinal Chemistry to Mitigate the Risk of Idiosyncratic Drug Toxicity: A Perspective Based on the Critical Examination of Trends in the Top 200 Drugs Marketed in the United States. Chemical Research in Toxicology, 2011, 24, 1345-1410.	3.3	569
67	Design and evaluation of a 2-(2,3,6-trifluorophenyl)acetamide derivative as an agonist of the GPR119 receptor. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 1306-1309.	2.2	27
68	Intrinsic electrophilicity of the 4-methylsulfonyl-2-pyridone scaffold in glucokinase activators: Role of glutathione-S-transferases and in vivo quantitation of a glutathione conjugate in rats. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 6262-6267.	2.2	21
69	Discovery Tactics To Mitigate Toxicity Risks Due to Reactive Metabolite Formation with 2-(2-Hydroxyaryl)-5-(trifluoromethyl)pyrido[4,3-d]pyrimidin-4(3H)-one Derivatives, Potent Calcium-Sensing Receptor Antagonists and Clinical Candidate(s) for the Treatment of Osteoporosis. Chemical Research in Toxicology, 2010, 23, 1115-1126.	3.3	24
70	N-(3,4-dimethoxyphenethyl)-4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2[1H]-yl)-6,7-dimethoxyquinazolin-2-amine (CP-100,356) as a "chemical knock-out equivalent―to assess the impact of efflux transporters on oral drug absorption in the rat. Journal of Pharmaceutical Sciences, 2009, 98, 4914-4927.	3.3	24
71	Structural Alerts, Reactive Metabolites, and Protein Covalent Binding: How Reliable Are These Attributes as Predictors of Drug Toxicity?. Chemistry and Biodiversity, 2009, 6, 2115-2137.	2.1	87
72	Biochemical basis for differences in metabolism-dependent genotoxicity by two diazinylpiperazine-based 5-HT2C receptor agonists. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 1559-1563.	2.2	25

#	Article	IF	CITATIONS
73	The discovery of novel calcium sensing receptor negative allosteric modulators. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3328-3332.	2.2	34
74	Differences in CYP3A4 catalyzed bioactivation of 5-aminooxindole and 5-aminobenzsultam scaffolds in proline-rich tyrosine kinase 2 (PYK2) inhibitors: Retrospective analysis by CYP3A4 molecular docking, quantum chemical calculations and glutathione adduct detection using linear ion trap/orbitrap mass spectrometry. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3177-3182.	2.2	11
75	Short-acting 5-(trifluoromethyl)pyrido[4,3-d]pyrimidin-4(3H)-one derivatives as orally-active calcium-sensing receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 4555-4559.	2.2	23
76	Can In Vitro Metabolism-Dependent Covalent Binding Data Distinguish Hepatotoxic from Nonhepatotoxic Drugs? An Analysis Using Human Hepatocytes and Liver S-9 Fraction. Chemical Research in Toxicology, 2009, 22, 332-340.	3.3	127
77	Trifluoromethylpyrimidine-based inhibitors of proline-rich tyrosine kinase 2 (PYK2): Structure–activity relationships and strategies for the elimination of reactive metabolite formation. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 6071-6077.	2.2	50
78	<i>In Vitro</i> Metabolism and Covalent Binding of Enol-Carboxamide Derivatives and Anti-Inflammatory Agents Sudoxicam and Meloxicam: Insights into the Hepatotoxicity of Sudoxicam. Chemical Research in Toxicology, 2008, 21, 1890-1899.	3.3	102
79	Can In Vitro Metabolism-Dependent Covalent Binding Data in Liver Microsomes Distinguish Hepatotoxic from Nonhepatotoxic Drugs? An Analysis of 18 Drugs with Consideration of Intrinsic Clearance and Daily Dose. Chemical Research in Toxicology, 2008, 21, 1814-1822.	3.3	194
80	Comparison of the Bioactivation Potential of the Antidepressant and Hepatotoxin Nefazodone with Aripiprazole, a Structural Analog and Marketed Drug. Drug Metabolism and Disposition, 2008, 36, 1016-1029.	3.3	78
81	Role of Bioactivation in Idiosyncratic Drug Toxicity: Structure–Toxicity Relationships. , 2008, , 1-29.		7
82	Toxicophores, reactive metabolites and drug safety: when is it a cause for concern?. Expert Review of Clinical Pharmacology, 2008, 1, 515-531.	3.1	29
83	Role of Transporters in the Disposition of the Selective Phosphodiesterase-4 Inhibitor (+)-2-[4-({[2-(Benzo[1,3]dioxol-5-yloxy)-pyridine-3-carbonyl]-amino}-methyl)-3-fluoro-phenoxy]-propionic Acid in Rat and Human. Drug Metabolism and Disposition, 2007, 35, 2111-2118.	3.3	23
84	Mechanism-Based Inactivation of Cytochrome P450 Enzymes: Chemical Mechanisms, Structure-Activity Relationships and Relationship to Clinical Drug-Drug Interactions and Idiosyncratic Adverse Drug Reactions. Current Drug Metabolism, 2007, 8, 407-447.	1.2	238
85	Genotoxicity of 2-(3-Chlorobenzyloxy)-6-(piperazinyl)pyrazine, a Novel 5-Hydroxytryptamine2c Receptor Agonist for the Treatment of Obesity: Role of Metabolic Activation. Drug Metabolism and Disposition, 2007, 35, 848-858.	3.3	53
86	A Rational Chemical Intervention Strategy To Circumvent Bioactivation Liabilities Associated with a Nonpeptidyl Thrombopoietin Receptor Agonist Containing a 2-Amino-4-arylthiazole Motif. Chemical Research in Toxicology, 2007, 20, 1954-1965.	3.3	52
87	NADPH-Dependent Covalent Binding of [³ H]Paroxetine to Human Liver Microsomes and S-9 Fractions: Identification of an Electrophilic Quinone Metabolite of Paroxetine. Chemical Research in Toxicology, 2007, 20, 1649-1657.	3.3	80
88	A Semiquantitative Method for the Determination of Reactive Metabolite Conjugate Levels in Vitro Utilizing Liquid Chromatographyâ^'Tandem Mass Spectrometry and Novel Quaternary Ammonium Glutathione Analogues. Chemical Research in Toxicology, 2006, 19, 480-490.	3.3	98
89	Application of a linear ion trap/orbitrap mass spectrometer in metabolite characterization studies: Examination of the human liver microsomal metabolism of the non-tricyclic anti-depressant nefazodone using data-dependent accurate mass measurements. Journal of the American Society for Mass Spectrometry, 2006, 17, 363-375.	2.8	113
90	Preclinical pharmacokinetics and metabolism of 6-(4-(2,5-difluorophenyl)oxazol-5-yl)-3-isopropyl-[1,2,4]-triazolo[4,3-a]pyridine, a novel and selective p38α inhibitor: identification of an active metabolite in preclinical species and human liver microsomes. Biopharmaceutics and Drug Disposition, 2006, 27, 371-386.	1.9	34

#	Article	IF	CITATIONS
91	Inhibition of Hepatobiliary Transport as a Predictive Method for Clinical Hepatotoxicity of Nefazodone. Toxicological Sciences, 2006, 90, 451-459.	3.1	122
92	Minimising the potential for metabolic activation in drug discovery. Expert Opinion on Drug Metabolism and Toxicology, 2005, 1, 91-142.	3.3	198
93	Metabolic activation of the nontricyclic antidepressant trazodone to electrophilic quinone-imine and epoxide intermediates in human liver microsomes and recombinant P4503A4. Chemico-Biological Interactions, 2005, 155, 10-20.	4.0	51
94	A Comprehensive Listing of Bioactivation Pathways of Organic Functional Groups. Current Drug Metabolism, 2005, 6, 161-225.	1.2	592
95	BIOACTIVATION OF THE NONTRICYCLIC ANTIDEPRESSANT NEFAZODONE TO A REACTIVE QUINONE-IMINE SPECIES IN HUMAN LIVER MICROSOMES AND RECOMBINANT CYTOCHROME P450 3A4. Drug Metabolism and Disposition, 2005, 33, 243-253.	3.3	160
96	Identification of an N-methyl-4-phenylpyridinium-like metabolite of the antidiarrheal agent loperamide in human liver microsomes: underlying reason(s) for the lack of neurotoxicity despite the bioactivation event. Drug Metabolism and Disposition, 2004, 32, 943-52.	3.3	21
97	MECHANISM-BASED INACTIVATION OF HUMAN RECOMBINANT P450 2C9 BY THE NONSTEROIDAL ANTI-INFLAMMATORY DRUG SUPROFEN. Drug Metabolism and Disposition, 2003, 31, 1369-1377.	3.3	92
98	Biotransformation Reactions of Five-Membered Aromatic Heterocyclic Rings. Chemical Research in Toxicology, 2002, 15, 269-299.	3.3	471
99	On the Diversity of Oxidative Bioactivation Reactions on Nitrogen- Containing Xenobiotics. Current Drug Metabolism, 2002, 3, 379-424.	1.2	103
100	Interactions of Nitrogen-Containing Xenobiotics with Monoamine Oxidase (MAO) Isozymes A and B:Â SAR Studies on MAO Substrates and Inhibitors. Chemical Research in Toxicology, 2001, 14, 1139-1162.	3.3	198
101	Selective inhibitors of monoamine oxidase (MAO-A and MAO-B) as probes of its catalytic site and mechanism. Medicinal Research Reviews, 1995, 15, 325-388.	10.5	90
102	Reliability of reactive metabolite and covalent binding assessments in prediction of idiosyncratic drug toxicity. , 0, , 102-123.		1