Kai Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2251050/publications.pdf

Version: 2024-02-01

		687363	642732
24	508	13	23
papers	citations	h-index	g-index
26	26	26	775
20	20	20	773
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Free energy cost to assemble superlattices of polymer-grafted nanoparticles. Soft Matter, 2022, 18, 640-647.	2.7	3
2	<i>In Situ</i> Atomic Force Microscopy Tracking of Nanoparticle Migration in Semicrystalline Polymers. ACS Macro Letters, 2022, 11, 818-824.	4.8	2
3	Unifying the concepts of scattering and structure factor in ordered and disordered samples. Journal of Applied Crystallography, 2021, 54, 644-660.	4.5	2
4	Quantifying Nanoparticle Assembly States in a Polymer Matrix through Deep Learning. Macromolecules, 2021, 54, 3034-3040.	4.8	9
5	Size-Sieving Separation of Hard-Sphere Gases at Low Concentrations through Cylindrically Porous Membranes. Soft Matter, 2021, 17, 10025-10031.	2.7	2
6	Impact of Electrostatic Interactions on the Self-Assembly of Charge-Neutral Block Copolyelectrolytes. Macromolecules, 2020, 53, 548-557.	4.8	14
7	Illustrating the Concepts of Entropy, Free Energy, and Thermodynamic Equilibrium with a Lattice Model. Journal of Chemical Education, 2020, 97, 1903-1907.	2.3	0
8	Glass formation in binary alloys with different atomic symmetries. Physical Review Materials, 2020, 4, .	2.4	5
9	Coarse-grained molecular dynamics simulation of activated penetrant transport in glassy polymers. Soft Matter, 2018, 14, 440-447.	2.7	31
10	Defining the optimal criterion for separating gases using polymeric membranes. Soft Matter, 2018, 14, 9847-9850.	2.7	1
11	Size-dependent penetrant diffusion in polymer glasses. Soft Matter, 2018, 14, 4226-4230.	2.7	22
12	Effects of cooling rate on particle rearrangement statistics: Rapidly cooled glasses are more ductile and less reversible. Physical Review E, 2017, 95, 022611.	2.1	39
13	Stable small bubble clusters in two-dimensional foams. Soft Matter, 2017, 13, 4370-4380.	2.7	1
14	Polymer-Grafted Nanoparticle Membranes with Controllable Free Volume. Macromolecules, 2017, 50, 7111-7120.	4.8	88
15	Molecular Simulations of Solute Transport in Polymer Melts. ACS Macro Letters, 2017, 6, 864-868.	4.8	21
16	Particle rearrangement and softening contributions to the nonlinear mechanical response of glasses. Physical Review E, 2017, 96, 032602.	2.1	10
17	Equilibrium Phase Behavior of a Continuous-Space Microphase Former. Physical Review Letters, 2016, 116, 098301.	7.8	76
18	Magnetic Alignment of Block Copolymer Microdomains by Intrinsic Chain Anisotropy. Physical Review Letters, 2015, 115, 258302.	7.8	51

#	ARTICLE	IF	CITATION
19	Beyond packing of hard spheres: The effects of core softness, non-additivity, intermediate-range repulsion, and many-body interactions on the glass-forming ability of bulk metallic glasses. Journal of Chemical Physics, 2015, 143, 184502.	3.0	18
20	The glass-forming ability of model metal-metalloid alloys. Journal of Chemical Physics, 2015, 142, 104504.	3.0	15
21	Asymmetric crystallization during cooling and heating in model glass-forming systems. Physical Review E, 2015, 91, 032309.	2.1	12
22	On the origin of multi-component bulk metallic glasses: Atomic size mismatches and de-mixing. Journal of Chemical Physics, 2015, 143, 054501.	3.0	25
23	Connection between the packing efficiency of binary hard spheres and the glass-forming ability of bulk metallic glasses. Physical Review E, 2014, 90, 032311.	2.1	32
24	Computational studies of the glass-forming ability of model bulk metallic glasses. Journal of Chemical Physics, 2013, 139, 124503.	3.0	29