
Fernando A O Silveira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2251038/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Revisiting florivory: an integrative review and global patterns of a neglected interaction. New Phytologist, 2022, 233, 132-144.	3.5	20
2	Biome Awareness Disparity is BAD for tropical ecosystem conservation and restoration. Journal of Applied Ecology, 2022, 59, 1967-1975.	1.9	38
3	Phylogenetic congruence between Neotropical primates and plants is driven by frugivory. Ecology Letters, 2022, 25, 320-329.	3.0	14
4	Fire and vegetation: Introduction to the special issue. Flora: Morphology, Distribution, Functional Ecology of Plants, 2022, 286, 151985.	0.6	2
5	Regeneration from seeds in South American savannas, in particular the Brazilian Cerrado. , 2022, , 183-197.		2
6	Placing Brazil's grasslands and savannas on the map of science and conservation. Perspectives in Plant Ecology, Evolution and Systematics, 2022, 56, 125687.	1.1	22
7	Towards the flower economics spectrum. New Phytologist, 2021, 229, 665-672.	3.5	41
8	A research agenda for the restoration of tropical and subtropical grasslands and savannas. Restoration Ecology, 2021, 29, e13292.	1.4	45
9	Frugivory and seed dispersal in a hyperdiverse plant clade and its role as a keystone resource for the Neotropical fauna. Annals of Botany, 2021, 127, 577-595.	1.4	15
10	A brief history of research in <i>campo rupestre</i> : identifying research priorities and revisiting the geographical distribution of an ancient, widespread Neotropical biome. Biological Journal of the Linnean Society, 2021, 133, 464-480.	0.7	24
11	Limited seed dispersability in a megadiverse OCBIL grassland. Biological Journal of the Linnean Society, 2021, 133, 499-511.	0.7	7
12	Do regeneration traits vary according to vegetation structure? A case study for savannas. Journal of Vegetation Science, 2021, 32, .	1.1	7
13	Seed tolerance to post-fire temperature fluctuation of Cerrado legume shrubs with micromorphological implications. Flora: Morphology, Distribution, Functional Ecology of Plants, 2021, 275, 151761.	0.6	5
14	How much leaf area do insects eat? A data set of insect herbivory sampled globally with a standardized protocol. Ecology, 2021, 102, e03301.	1.5	9
15	How does spatial microâ€environmental heterogeneity influence seedling recruitment in ironstone outcrops?. Journal of Vegetation Science, 2021, 32, e13010.	1.1	2
16	OCBIL theory: a new science for old ecosystems. Biological Journal of the Linnean Society, 2021, 133, 251-265.	0.7	8
17	OCBIL theory examined: reassessing evolution, ecology and conservation in the world's ancient, climatically buffered and infertile landscapes. Biological Journal of the Linnean Society, 2021, 133, 266-296.	0.7	36
18	Where to Graze? An Edaphic Grassland Perspective of Grazing Management in Grassy Ecosystems. Tropical Conservation Science, 2021, 14, 194008292110422.	0.6	1

Fernando A O Silveira

#	Article	IF	CITATIONS
19	Contrasting functional responses of non-native invasive species along a tropical elevation gradient. Acta Botanica Brasilica, 2021, 35, 683-688.	0.8	0
20	High plant taxonomic beta diversity and functional and phylogenetic convergence between two Neotropical inselbergs. Plant Ecology and Diversity, 2020, 13, 61-73.	1.0	16
21	Biodiversity and ecosystem services in the Campo Rupestre: A road map for the sustainability of the hottest Brazilian biodiversity hotspot. Perspectives in Ecology and Conservation, 2020, 18, 213-222.	1.0	34
22	Towards more sustainable cropping systems: lessons from native Cerrado species. Theoretical and Experimental Plant Physiology, 2020, 32, 175-194.	1.1	18
23	Vegetation misclassification compromises conservation of biodiversity and ecosystem services in Atlantic Forest ironstone outcrops. Perspectives in Ecology and Conservation, 2020, 18, 238-242.	1.0	2
24	Seed Functional Traits Provide Support for Ecological Restoration and ex situ Conservation in the Threatened Amazon Ironstone Outcrop Flora. Frontiers in Plant Science, 2020, 11, 599496.	1.7	15
25	Mythâ€busting tropical grassy biome restoration. Restoration Ecology, 2020, 28, 1067-1073.	1.4	50
26	From ashes to understanding: Opinion papers on fire and a call for papers for a Special Issue in Flora. Flora: Morphology, Distribution, Functional Ecology of Plants, 2020, 268, 151608.	0.6	3
27	Dormancy and germination: making every seed count in restoration. Restoration Ecology, 2020, 28, S256.	1.4	78
28	Topsoil disturbance reshapes diaspore interactions with groundâ€foraging animals in a megadiverse grassland. Journal of Vegetation Science, 2020, 31, 1039-1052.	1.1	5
29	Linking Plant Functional Ecology to Island Biogeography. Trends in Plant Science, 2020, 25, 329-339.	4.3	70
30	Diversification in Ancient and Nutrient-Poor Neotropical Ecosystems: How Geological and Climatic Buffering Shaped Plant Diversity in Some of the World's Neglected Hotspots. Fascinating Life Sciences, 2020, , 329-368.	0.5	16
31	Searching for keystone plant resources in fruitâ€frugivore interaction networks across the Neotropics. Biotropica, 2020, 52, 857-870.	0.8	26
32	A simple standardized protocol to evaluate the reliability of seed rain estimates. Seed Science Research, 2020, 30, 304-309.	0.8	1
33	Comment on "The global tree restoration potential― Science, 2019, 366, .	6.0	185
34	Water-use strategies in flowers from a neotropical savanna under contrasting environmental conditions during flowering. Plant Physiology and Biochemistry, 2019, 144, 283-291.	2.8	15
35	Fire and legume germination in a tropical savanna: ecological and historical factors. Annals of Botany, 2019, 123, 1219-1229.	1.4	33
36	Tropical mountains as natural laboratories to study global changes: A long-term ecological research project in a megadiverse biodiversity hotspot. Perspectives in Plant Ecology, Evolution and Systematics, 2019, 38, 64-73.	1.1	42

FERNANDO A O SILVEIRA

#	Article	IF	CITATIONS
37	Fire effects on seed germination: Heat shock and smoke on permeable vs impermeable seed coats. Flora: Morphology, Distribution, Functional Ecology of Plants, 2019, 253, 98-106.	0.6	43
38	Avoiding tailings dam collapses requires governance, partnership and responsibility. Biodiversity and Conservation, 2019, 28, 1933-1934.	1.2	11
39	A Humboldtian Approach to Mountain Conservation and Freshwater Ecosystem Services. Frontiers in Environmental Science, 2019, 7, .	1.5	39
40	One for all and all for one: retention of colourâ€unchanged old flowers increases pollinator attraction in a hermaphroditic plant. Plant Biology, 2019, 21, 167-175.	1.8	6
41	Rocks and leaves: Can anatomical leaf traits reflect environmental heterogeneity in inselberg vegetation?. Flora: Morphology, Distribution, Functional Ecology of Plants, 2019, 250, 91-98.	0.6	24
42	Resilience and restoration of tropical and subtropical grasslands, savannas, and grassy woodlands. Biological Reviews, 2019, 94, 590-609.	4.7	205
43	A research agenda for seedâ€ŧrait functional ecology. New Phytologist, 2019, 221, 1764-1775.	3.5	218
44	How have we studied seed rain in grasslands and what do we need to improve for better restoration?. Restoration Ecology, 2018, 26, S84.	1.4	14
45	Differential gender selection on flower size in two Neotropical savanna congeneric species. Plant Ecology, 2018, 219, 89-100.	0.7	3
46	Timing of seed dispersal and seed dormancy in Brazilian savanna: two solutions to face seasonality. Annals of Botany, 2018, 121, 1197-1209.	1.4	63
47	So close, yet so different: Divergences in resource use may help stabilize coexistence of phylogenetically-related species in a megadiverse grassland. Flora: Morphology, Distribution, Functional Ecology of Plants, 2018, 238, 72-78.	0.6	16
48	Plant life in campo rupestre : New lessons from an ancient biodiversity hotspot. Flora: Morphology, Distribution, Functional Ecology of Plants, 2018, 238, 1-10.	0.6	47
49	Ex situ conservation of threatened plants in Brazil: a strategic plan to achieve Target 8 of the Global Strategy for Plant Conservation. Rodriguesia, 2018, 69, 1547-1555.	0.9	8
50	Ontogenetic shifts in plant ecological strategies. Functional Ecology, 2018, 32, 2730-2741.	1.7	82
51	Effects of seed size and frugivory degree on dispersal by Neotropical frugivores. Acta Oecologica, 2018, 93, 41-47.	O.5	30
52	Handling by avian frugivores affects diaspore secondary removal. PLoS ONE, 2018, 13, e0202435.	1.1	13
53	Gaps critical for the survival of exposed seeds during Cerrado fires. Australian Journal of Botany, 2018, 66, 116.	0.3	24
54	Brazil's protected areas under threat. Science, 2018, 361, 459-459.	6.0	11

4

Fernando A O Silveira

#	Article	IF	CITATIONS
55	Fluctuating asymmetry in leaves and flowers of sympatric species in a tropical montane environment. Plant Species Biology, 2017, 32, 3-12.	0.6	10
56	Grassy biomes: An inconvenient reality for largeâ€scale forest restoration? A comment on the essay by Chazdon and Laestadius. American Journal of Botany, 2017, 104, 649-651.	0.8	20
57	Reproductive phenology of Melastomataceae species with contrasting reproductive systems: contemporary and historical drivers. Plant Biology, 2017, 19, 806-817.	1.8	36
58	A field perspective on effects of fire and temperature fluctuation on Cerrado legume seeds. Seed Science Research, 2017, 27, 74-83.	0.8	36
59	How far do Neotropical primates disperse seeds?. American Journal of Primatology, 2017, 79, e22659.	0.8	25
60	Frugivory and seed dispersal effectiveness in two <i>Miconia</i> (Melastomataceae) species from ferruginous <i>campo rupestre</i> . Seed Science Research, 2017, 27, 65-73.	0.8	10
61	Gaps in seed banking are compromising the GSPC's Target 8 in a megadiverse country. Biodiversity and Conservation, 2017, 26, 703-716.	1.2	25
62	Intraspecific variation in fruit–frugivore interactions: effects of fruiting neighborhood and consequences for seed dispersal. Oecologia, 2017, 185, 233-243.	0.9	34
63	Phylogeny strongly drives seed dormancy and quality in a climatically buffered hotspot for plant endemism. Annals of Botany, 2017, 119, 267-277.	1.4	72
64	Duality of interaction outcomes in a plant–frugivore multilayer network. Oikos, 2017, 126, 361-368.	1.2	48
65	Effects of sex and altitude on nutrient, and carbon and nitrogen stable isotope composition of the endangered shrub Baccharis concinna G.M. Barroso (Asteraceae). Acta Botanica Brasilica, 2017, 31, 229-240.	0.8	2
66	How do primates affect seed germination? A metaâ€analysis of gut passage effects on neotropical plants. Oikos, 2016, 125, 1069-1080.	1.2	67
67	Seed Germination Ecology in Rupestrian Grasslands. , 2016, , 207-225.		8
68	Mutualistic Interactions Among Free-Living Species in Rupestrian Grasslands. , 2016, , 291-314.		13
69	Does seed coat structure modulate gut-passage effects on seed germination? Examples from Miconieae DC. (Melastomataceae). Seed Science Research, 2016, 26, 139-147.	0.8	10
70	Overcoming challenges on using native seeds for restoration of megadiverse resourceâ€poor environments: a reply to Madsen et al Restoration Ecology, 2016, 24, 710-713.	1.4	16
71	Worldwide destruction of inselbergs and related rock outcrops threatens a unique ecosystem. Biodiversity and Conservation, 2016, 25, 2827-2830.	1.2	56
72	Seed germination traits can contribute better to plant community ecology. Journal of Vegetation Science, 2016, 27, 637-645.	1.1	192

#	Article	IF	CITATIONS
73	Assessing bias and knowledge gaps on seed ecology research: implications for conservation agenda and policy. Ecological Applications, 2016, 26, 2033-2043.	1.8	32
74	Biodiversity hotspots and Ocbil theory. Plant and Soil, 2016, 403, 167-216.	1.8	146
75	Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority. Plant and Soil, 2016, 403, 129-152.	1.8	467
76	Diversity of germination strategies and seed dormancy in herbaceous species of <i>campo rupestre</i> grasslands. Austral Ecology, 2015, 40, 537-546.	0.7	75
77	Does successful ovule development depend on its position within the pod? Examples from <scp>N</scp> eotropical <scp>F</scp> abaceae. Plant Species Biology, 2015, 30, 285-290.	0.6	2
78	Phenotypic plasticity and similarity among gall morphotypes on a superhost, <i>Baccharis reticularia</i> (Asteraceae). Plant Biology, 2015, 17, 512-521.	1.8	24
79	Costs and benefits of reproducing under unfavorable conditions: an integrated view of ecological and physiological constraints in a cerrado shrub. Plant Ecology, 2015, 216, 963-974.	0.7	5
80	Functional ecology as a missing link for conservation of a resource-limited flora in the Atlantic forest. Biodiversity and Conservation, 2015, 24, 2239-2253.	1.2	54
81	A new seed coat water-impermeability mechanism in Chaetostoma armatum (Melastomataceae): evolutionary and biogeographical implications of physiophysical dormancy. Seed Science Research, 2015, 25, 194-202.	0.8	13
82	Are seed germination and ecological breadth associated? Testing the regeneration niche hypothesis with bromeliads in a heterogeneous neotropical montane vegetation. Plant Ecology, 2014, 215, 517-529.	0.7	59
83	Seed and Seedling Ecophysiology of Neotropical Melastomataceae: Implications for Conservation and Restoration of Savannas and Rainforests ¹ . Annals of the Missouri Botanical Garden, 2013, 99, 82-99.	1.3	41
84	Seed germination requirements of <scp><i>T</i></scp> <i>rembleya laniflora</i> (<scp>M</scp> elastomataceae), an endemic species from neotropical montane rocky savannas. Plant Species Biology, 2013, 28, 165-168.	0.6	11
85	Interactions between Ants and Nonâ€myrmecochorous Fruits in <i>Miconia</i> (Melastomataceae) in a Neotropical Savanna. Biotropica, 2013, 45, 217-223.	0.8	27
86	Physiological dormancy and seed germination inhibitors in Miconia (Melastomataceae). Plant Ecology and Evolution, 2013, 146, 290-294.	0.3	16
87	Fenologia reprodutiva e vegetativa de arbustos endêmicos de campo rupestre na Serra do CipÃ3, Sudeste do Brasil. Rodriguesia, 2013, 64, 817-828.	0.9	19
88	Does plant architectural complexity increase with increasing habitat complexity? A test with a pioneer shrub in the Brazilian Cerrado. Brazilian Journal of Biology, 2013, 73, 271-277.	0.4	7
89	Evolution of physiological dormancy multiple times in Melastomataceae from Neotropical montane vegetation. Seed Science Research, 2012, 22, 37-44.	0.8	53
90	Abiotic factors modulate phenotypic plasticity in an apomictic shrub [Miconia albicans (SW.) Triana] along a soil fertility gradient in a Neotropical savanna. Australian Journal of Botany, 2011, 59, 274.	0.3	26

#	Article	IF	CITATIONS
91	Reproductive phenology, seed germination and <i>ex situ</i> conservation of <i>Pseudananas sagenarius</i> in a semiâ€deciduous tropical forest fragment. Plant Species Biology, 2010, 25, 214-220.	0.6	9
92	Pattern of attack of a galling insect reveals an unexpected preference-performance linkage on medium-sized resources. Revista Brasileira De Entomologia, 2010, 54, 96-103.	0.1	5
93	Anatomical and developmental aspects of leaf galls induced by Schizomyia macrocapillata Maia (Diptera: Cecidomyiidae) on Bauhinia brevipes Vogel (Fabaceae). Revista Brasileira De Botanica, 2009, 32, 319-327.	0.5	24
94	Ants on plants: a meta-analysis of the role of ants as plant biotic defenses. Oecologia, 2009, 160, 537-549.	0.9	321
95	Seedling growth and biomass allocation of endemic and threatened shrubs of rupestrian fields. Acta Oecologica, 2009, 35, 301-310.	0.5	40
96	Long term oviposition preference and larval performance of Schizomyia macrocapillata (Diptera:) Tj ETQq0 0 0 rg 2008, 22, 123-137.	BT /Overlo 0.5	ock 10 Tf 50 51
97	Relationships between host plant architecture and gall abundance and survival. Revista Brasileira De Entomologia, 2008, 52, 78-81.	0.1	24
98	Distribution and frequency of galls induced by Anisodiplosis waltheriae Maia (Diptera: Cecidomyiidae) on the invasive plant Waltheria indica L. (Sterculiaceae). Neotropical Entomology, 2006, 35, 435-439.	0.5	9
99	Influência da luz e da temperatura na germinação de sementes de Marcetia taxifolia (A. StHil.) DC. (Melastomataceae). Acta Botanica Brasilica, 2004, 18, 847-851.	0.8	24
100	The distribution of genetic variability in Baccharis concinna (Asteraceae), an endemic, dioecious and threatened shrub of rupestrian fields of Brazil Conservation Cenetics, 2004, 5, 157-165	0.8	11

threatened shrub of rupestrian fields of Brazil. Conservation Genetics, 2004, 5, 157-165. 100