Neal F Lue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2251007/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ustilago maydis telomere protein Pot1 harbors an extra N-terminal OB fold and regulates homology-directed DNA repair factors in a dichotomous and context-dependent manner. PLoS Genetics, 2022, 18, e1010182.	1.5	4
2	Duplex Telomere-Binding Proteins in Fungi With Canonical Telomere Repeats: New Lessons in the Rapid Evolution of Telomere Proteins. Frontiers in Genetics, 2021, 12, 638790.	1.1	6
3	Reciprocal impacts of telomerase activity and ADRN/MES differentiation state in neuroblastoma tumor biology. Communications Biology, 2021, 4, 1315.	2.0	2
4	Structurally distinct telomere-binding proteins in Ustilago maydis execute non-overlapping functions in telomere replication, recombination, and protection. Communications Biology, 2020, 3, 777.	2.0	8
5	Telomere Trimming and DNA Damage as Signatures of High Risk Neuroblastoma. Neoplasia, 2019, 21, 689-701.	2.3	11
6	Direct observation of nucleic acid binding dynamics by the telomerase essential N-terminal domain. Nucleic Acids Research, 2018, 46, 3088-3102.	6.5	10
7	Evolving Linear Chromosomes and Telomeres: A C-Strand-Centric View. Trends in Biochemical Sciences, 2018, 43, 314-326.	3.7	35
8	Contributions of recombination and repair proteins to telomere maintenance in telomeraseâ€positive and negative <i>Ustilago maydis</i> . Molecular Microbiology, 2018, 107, 81-93.	1.2	9
9	The mechanisms of K. lactis Cdc13 in telomere DNA-binding and telomerase regulation. DNA Repair, 2018, 61, 37-45.	1.3	1
10	Single telomere length analysis in Ustilago maydis, a high-resolution tool for examining fungal telomere length distribution and C-strand 5'-end processing. Microbial Cell, 2018, 5, 393-403.	1.4	6
11	Analysis of Yeast Telomerase by Primer Extension Assays. Methods in Molecular Biology, 2017, 1587, 83-93.	0.4	0
12	Telomere recombination pathways: tales of several unhappy marriages. Current Genetics, 2017, 63, 401-409.	0.8	19
13	STN1–POLA2 interaction provides a basis for primase-pol α stimulation by human STN1. Nucleic Acids Research, 2017, 45, 9455-9466.	6.5	46
14	Mre11 and Blm-Dependent Formation of ALT-Like Telomeres in Ku-Deficient Ustilago maydis. PLoS Genetics, 2015, 11, e1005570.	1.5	23
15	Fungal Ku prevents permanent cell cycle arrest by suppressing DNA damage signaling at telomeres. Nucleic Acids Research, 2015, 43, 2138-2151.	6.5	22
16	Combinatorial recognition of a complex telomere repeat sequence by the Candida parapsilosis Cdc13AB heterodimer. Nucleic Acids Research, 2015, 43, 2164-2176.	6.5	7
17	Telomere DNA recognition in Saccharomycotina yeast: potential lessons for the co-evolution of ssDNA and dsDNA-binding proteins and their target sites. Frontiers in Genetics, 2015, 6, 162.	1.1	27
18	The CDC13-STN1-TEN1 complex stimulates Pol α activity by promoting RNA priming and primase-to-polymerase switch. Nature Communications, 2014, 5, 5762.	5.8	69

#	Article	IF	CITATIONS
19	A popular engagement at the ends. Nature Structural and Molecular Biology, 2013, 20, 10-12.	3.6	8
20	SLX4 Assembles a Telomere Maintenance Toolkit by Bridging Multiple Endonucleases with Telomeres. Cell Reports, 2013, 4, 861-869.	2.9	103
21	Duplication and Functional Specialization of the Telomere-capping Protein Cdc13 in Candida Species*. Journal of Biological Chemistry, 2013, 288, 29115-29123.	1.6	18
22	Brh2 and Rad51 promote telomere maintenance in Ustilago maydis, a new model system of DNA repair proteins at telomeres. DNA Repair, 2013, 12, 472-479.	1.3	22
23	The Telomere Capping Complex CST Has an Unusual Stoichiometry, Makes Multipartite Interaction with G-Tails, and Unfolds Higher-Order G-Tail Structures. PLoS Genetics, 2013, 9, e1003145.	1.5	39
24	Loss of ATRX, Genome Instability, and an Altered DNA Damage Response Are Hallmarks of the Alternative Lengthening of Telomeres Pathway. PLoS Genetics, 2012, 8, e1002772.	1.5	489
25	Functional Analysis of the Single Est1/Ebs1 Homologue in Kluyveromyces lactis Reveals Roles in both Telomere Maintenance and Rapamycin Resistance. Eukaryotic Cell, 2012, 11, 932-942.	3.4	3
26	Analyses of <i>Candida</i> Cdc13 Orthologues Revealed a Novel OB Fold Dimer Arrangement, Dimerization-Assisted DNA Binding, and Substantial Structural Differences between Cdc13 and RPA70. Molecular and Cellular Biology, 2012, 32, 186-198.	1.1	29
27	Analysis of Yeast Telomerase by Primer Extension Assays. Methods in Molecular Biology, 2011, 735, 97-106.	0.4	2
28	A Web of Interactions at the Ends. Molecular Cell, 2011, 42, 269-271.	4.5	2
29	Structural bases of dimerization of yeast telomere protein Cdc13 and its interaction with the catalytic subunit of DNA polymerase î±. Cell Research, 2011, 21, 258-274.	5.7	67
30	The Candida albicans Ku70 Modulates Telomere Length and Structure by Regulating Both Telomerase and Recombination. PLoS ONE, 2011, 6, e23732.	1.1	13
31	Telomerase regulatory subunit Est3 in two Candida species physically interacts with the TEN domain of TERT and telomeric DNA. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20370-20375.	3.3	22
32	Plasticity of telomere maintenance mechanisms in yeast. Trends in Biochemical Sciences, 2010, 35, 8-17.	3.7	64
33	Rap1 in <i>Candida albicans</i> : an Unusual Structural Organization and a Critical Function in Suppressing Telomere Recombination. Molecular and Cellular Biology, 2010, 30, 1254-1268.	1.1	36
34	Stn1–Ten1 is an Rpa2–Rpa3-like complex at telomeres. Genes and Development, 2009, 23, 2900-2914.	2.7	116
35	Closing the Feedback Loop: How Cells "Count―Telomere-Bound Proteins. Molecular Cell, 2009, 33, 413-414.	4.5	6
36	A proposed OB-fold with a protein-interaction surface in Candida albicans telomerase protein Est3. Nature Structural and Molecular Biology, 2008, 15, 985-989.	3.6	54

#	Article	IF	CITATIONS
37	Telomerase core components protect <i>Candida</i> telomeres from aberrant overhang accumulation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11682-11687.	3.3	34
38	Regulation of Telomere Structure and Functions by Subunits of the INO80 Chromatin Remodeling Complex. Molecular and Cellular Biology, 2007, 27, 5639-5649.	1,1	50
39	Modeling and structure function analysis of the putative anchor site of yeast telomerase. Nucleic Acids Research, 2007, 35, 5213-5222.	6.5	21
40	Mutual Dependence of Candida albicans Est1p and Est3p in Telomerase Assembly and Activation. Eukaryotic Cell, 2007, 6, 1330-1338.	3.4	40
41	The Structure and Function of Telomerase Reverse Transcriptase. Annual Review of Biochemistry, 2006, 75, 493-517.	5.0	427
42	Modulation of telomere terminal structure by telomerase components in Candida albicans. Nucleic Acids Research, 2006, 34, 2710-2722.	6.5	12
43	Telomerase can act as a template- and RNA-independent terminal transferase. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9778-9783.	3.3	46
44	A Physical and Functional Constituent of Telomerase Anchor Site. Journal of Biological Chemistry, 2005, 280, 26586-26591.	1.6	63
45	Chromatin Remodeling. Science Signaling, 2005, 2005, tr20-tr20.	1.6	1
46	Yeast telomerase is capable of limited repeat addition processivity. Nucleic Acids Research, 2004, 32, 93-101.	6.5	37
47	Reverse transcriptase at bacterial telomeres. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14307-14308.	3.3	0
48	Homologous recombination in Candida albicans: role of CaRad52p in DNA repair, integration of linear DNA fragments and telomere length. Molecular Microbiology, 2004, 53, 1177-1194.	1.2	56
49	Adding to the ends: what makes telomerase processive and how important is it?. BioEssays, 2004, 26, 955-962.	1.2	71
50	A Conserved Telomerase Motif within the Catalytic Domain of Telomerase Reverse Transcriptase Is Specifically Required for Repeat Addition Processivity. Molecular and Cellular Biology, 2003, 23, 8440-8449.	1,1	73
51	Ever shorter telomere 1 (EST1)-dependent reverse transcription by Candida telomerase in vitro: Evidence in support of an activating function. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5718-5723.	3.3	28
52	Conserved N-terminal Motifs of Telomerase Reverse Transcriptase Required for Ribonucleoprotein Assembly in Vivo. Journal of Biological Chemistry, 2003, 278, 3882-3890.	1.6	76
53	mRNAs Encoding Telomerase Components and Regulators Are Controlled by UPF Genes in Saccharomyces cerevisiae. Eukaryotic Cell, 2003, 2, 134-142.	3.4	62
54	Functional Analysis of the C-terminal Extension of Telomerase Reverse Transcriptase. Journal of Biological Chemistry, 2002, 277, 36174-36180.	1.6	61

#	Article	lF	CITATIONS
55	Analysis of Telomerase in Candida albicans : Potential Role in Telomere End Protection. Eukaryotic Cell, 2002, 1, 967-977.	3.4	44
56	Analysis of Telomerase Processivity. Molecular Cell, 2001, 7, 1201-1211.	4.5	118
57	Functional Analysis of Conserved Residues in the Putative "Finger―Domain of Telomerase Reverse Transcriptase. Journal of Biological Chemistry, 2001, 276, 46305-46312.	1.6	42
58	Characterization of the Interaction between the Nuclease and Reverse Transcriptase Activity of the Yeast Telomerase Complex. Molecular and Cellular Biology, 2000, 20, 6806-6815.	1.1	28
59	Identification of Functionally Important Domains in the N-Terminal Region of Telomerase Reverse Transcriptase. Molecular and Cellular Biology, 2000, 20, 5196-5207.	1.1	136
60	Sequence-specific and conformation-dependent binding of yeast telomerase RNA to single-stranded telomeric DNA. Nucleic Acids Research, 1999, 27, 2560-2567.	6.5	8
61	Species-specific and sequence-specific recognition of the dG-rich strand of telomeres by yeast telomerase. Nucleic Acids Research, 1998, 26, 1495-1502.	6.5	17
62	Negative regulation of yeast telomerase activity through an interaction with an upstream region of the DNA primer. Nucleic Acids Research, 1998, 26, 1487-1494.	6.5	41
63	Identification and characterization of a telomerase activity from Schizosaccharomyces pombe. Nucleic Acids Research, 1997, 25, 4331-4337.	6.5	33
64	Cdc13p: A Single-Strand Telomeric DNA-Binding Protein with a Dual Role in Yeast Telomere Maintenance. Science, 1996, 274, 249-252.	6.0	567
65	Structural studies of type I DNA topoisomerases. Acta Crystallographica Section A: Foundations and Advances, 1996, 52, C153-C153.	0.3	0
66	A 26 kDa yeast DNA topoisomerase I fragment: crystallographic structure and mechanistic implications. Structure, 1995, 3, 1315-1322.	1.6	35
67	ATP-dependent Processivity of a Telomerase Activity from Saccharomyces cerevisiae. Journal of Biological Chemistry, 1995, 270, 21453-21456.	1.6	21
68	A possible role for the yeast TATA-element-binding protein in DNA replication Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 8018-8022.	3.3	21
69	A yeast protein that influences the chromatin structure of UASG and functions as a powerful auxiliary gene activator Genes and Development, 1990, 4, 503-514.	2.7	227
70	Interchangeable RNA polymerase I and II enhancers Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 8202-8206.	3.3	19
71	Initiation by yeast RNA polymerase II at the adenoviral major late promoter in vitro. Science, 1989, 246, 661-664.	6.0	84
72	Activation of yeast RNA polymerase II transcription by a thymidine-rich upstream element in vitro Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 486-490.	3.3	120

#	Article	IF	CITATIONS
73	Statistical positioning of nucleosomes by specific protein-binding to an upstream activating sequence in yeast. Journal of Molecular Biology, 1988, 204, 109-127.	2.0	270
74	Connections between transcriptional activators, silencers, and telomeres as revealed by functional analysis of a yeast DNA-binding protein Molecular and Cellular Biology, 1988, 8, 5086-5099.	1.1	315
75	Interaction of GAL4 and GAL80 gene regulatory proteins in vitro Molecular and Cellular Biology, 1987, 7, 3446-3451.	1.1	167
76	Accurate initiation at RNA polymerase II promoters in extracts from Saccharomyces cerevisiae Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 8839-8843.	3.3	152
77	Effect of dimethyl sulfoxide on transformed rat Schwann cells. Biochimica Et Biophysica Acta - General Subjects, 1987, 923, 451-462.	1.1	2
78	Biosynthesis of myelin-associated proteins in Simian virus 40 (SV40)-transformed rat Schwann cell lines. Brain Research, 1987, 414, 35-48.	1.1	18
79	A GAL family of upstream activating sequences in yeast: roles in both induction and repression of transcription FMBO Journal. 1986, 5, 603-608.	3.5	154