
Igor Adameyko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/225087/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The transcriptional portraits of the neural crest at the individual cell level. Seminars in Cell and Developmental Biology, 2023, 138, 68-80.	2.3	9
2	Mesenchymal-Type Neuroblastoma Cells Escape ALK Inhibitors. Cancer Research, 2022, 82, 484-496.	0.4	18
3	Living in darkness: Exploring adaptation of <i>Proteus anguinus</i> in 3 dimensions by X-ray imaging. GigaScience, 2022, 11, .	3.3	2
4	Bhlhe40 function in activated B and TFH cells restrains the GC reaction and prevents lymphomagenesis. Journal of Experimental Medicine, 2022, 219, .	4.2	17
5	Surface flow for colonial integration in reef-building corals. Current Biology, 2022, 32, 2596-2609.e7.	1.8	10
6	Serotonin limits generation of chromaffin cells during adrenal organ development. Nature Communications, 2022, 13, .	5.8	8
7	Resolving complex cartilage structures in developmental biology via deep learning-based automatic segmentation of X-ray computed microtomography images. Scientific Reports, 2022, 12, .	1.6	1
8	BET and CDK Inhibition Reveal Differences in the Proliferation Control of Sympathetic Ganglion Neuroblasts and Adrenal Chromaffin Cells. Cancers, 2022, 14, 2755.	1.7	1
9	Neural network learning defines glioblastoma features to be of neural crest perivascular or radial glia lineages. Science Advances, 2022, 8, .	4.7	11
10	Single-cell RNA-sequencing analysis of the developing mouse inner ear identifies molecular logic of auditory neuron diversification. Nature Communications, 2022, 13, .	5.8	30
11	Schwann cell precursors represent a neural crestâ€like state with biased multipotency. EMBO Journal, 2022, 41, .	3.5	28
12	Neuronal lineages derived from the nerve-associated Schwann cell precursors. Cellular and Molecular Life Sciences, 2021, 78, 513-529.	2.4	12
13	X-ray microtomography–based atlas of mouse cranial development. GigaScience, 2021, 10, .	3.3	6
14	Single-cell transcriptomics of human embryos identifies multiple sympathoblast lineages with potential implications for neuroblastoma origin. Nature Genetics, 2021, 53, 694-706.	9.4	90
15	Evolutionary switch in expression of key markers between mouse and human leads to mis-assignment of cell types in developing adrenal medulla. Cancer Cell, 2021, 39, 590-591.	7.7	7
16	Single ell Level Identification Of Cephalic Epithelial Transcriptomic Signatures To Elucidate The Pathogenesis Of Cleft Lip/Palate. FASEB Journal, 2021, 35, .	0.2	0
17	Schwann cell precursors generate sympathoadrenal system during zebrafish development. Journal of Neuroscience Research, 2021, 99, 2540-2557.	1.3	6
18	Nerve-associated Schwann cell precursors contribute extracutaneous melanocytes to the heart, inner ear, supraorbital locations and brain meninges. Cellular and Molecular Life Sciences, 2021, 78, 6033-6049.	2.4	13

#	Article	IF	CITATIONS
19	Limited access to antigen drives generation of early B cell memory while restraining the plasmablast response. Immunity, 2021, 54, 2005-2023.e10.	6.6	46
20	Single-nuclei transcriptomes from human adrenal gland reveal distinct cellular identities of low and high-risk neuroblastoma tumors. Nature Communications, 2021, 12, 5309.	5.8	38
21	Stem cell contributions to cementoblast differentiation in healthy periodontal ligament and periodontitis. Stem Cells, 2021, 39, 92-102.	1.4	45
22	Rapid Isolation of Single Cells from Mouse and Human Teeth. Journal of Visualized Experiments, 2021, ,	0.2	2
23	Theory of branching morphogenesis by local interactions and global guidance. Nature Communications, 2021, 12, 6830.	5.8	20
24	Prototypical pacemaker neurons interact with the resident microbiota. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17854-17863.	3.3	47
25	Contribution of neural crest and GLAST ⁺ Wnt1 ⁺ bone marrow pericytes with liver fibrogenesis and/or regeneration. Liver International, 2020, 40, 977-987.	1.9	7
26	Stem cells, evolutionary aspects and pathology of the adrenal medulla: A new developmental paradigm. Molecular and Cellular Endocrinology, 2020, 518, 110998.	1.6	19
27	Dental cell type atlas reveals stem and differentiated cell types in mouse and human teeth. Nature Communications, 2020, 11, 4816.	5.8	126
28	Single cell RNA sequencing identifies early diversity of sensory neurons forming via bi-potential intermediates. Nature Communications, 2020, 11, 4175.	5.8	45
29	Molecular design of hypothalamus development. Nature, 2020, 582, 246-252.	13.7	105
30	Epiphyseal Cartilage Formation Involves Differential Dynamics of Various Cellular Populations During Embryogenesis. Frontiers in Cell and Developmental Biology, 2020, 8, 122.	1.8	7
31	Cruciate ligament, patellar tendon, and patella formation involves differential cellular sources and dynamics as joint cavitation proceeds. Developmental Dynamics, 2020, 249, 711-722.	0.8	4
32	Secondary ossification center induces and protects growth plate structure. ELife, 2020, 9, .	2.8	29
33	Specialized cutaneous Schwann cells initiate pain sensation. Science, 2019, 365, 695-699.	6.0	231
34	Schwann cell precursors contribute to skeletal formation during embryonic development in mice and zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15068-15073.	3.3	51
35	Recent advances in our understanding of central and peripheral nervous system progenitors. Current Opinion in Cell Biology, 2019, 61, 24-30.	2.6	6
36	Transglutaminase Activity Determines Nuclear Localization of Serotonin Immunoreactivity in the Early Embryos of Invertebrates and Vertebrates. ACS Chemical Neuroscience, 2019, 10, 3888-3899.	1.7	18

#	Article	IF	CITATIONS
37	Generation and characterization of DSPP erulean/DMP1 herry reporter mice. Genesis, 2019, 57, e23324.	0.8	17
38	A cell fitness selection model for neuronal survival during development. Nature Communications, 2019, 10, 4137.	5.8	10
39	Schwann Cell Precursors Generate the Majority of Chromaffin Cells in Zuckerkandl Organ and Some Sympathetic Neurons in Paraganglia. Frontiers in Molecular Neuroscience, 2019, 12, 6.	1.4	65
40	Spatiotemporal structure of cell fate decisions in murine neural crest. Science, 2019, 364, .	6.0	345
41	Ribosome biogenesis during cell cycle arrest fuels EMT in development and disease. Nature Communications, 2019, 10, 2110.	5.8	139
42	PRDM12 Is Required for Initiation of the Nociceptive Neuron Lineage during Neurogenesis. Cell Reports, 2019, 26, 3484-3492.e4.	2.9	40
43	Nerves Do It Again: Donation of Mesenchymal Cells for Tissue Regeneration. Cell Stem Cell, 2019, 24, 195-197.	5.2	7
44	A radical switch in clonality reveals a stem cell niche in the epiphyseal growth plate. Nature, 2019, 567, 234-238.	13.7	153
45	Ablation of CNTN2+ Pyramidal Neurons During Development Results in Defects in Neocortical Size and Axonal Tract Formation. Frontiers in Cellular Neuroscience, 2019, 13, 454.	1.8	12
46	An interactive and intuitive visualisation method for X-ray computed tomography data of biological samples in 3D Portable Document Format. Scientific Reports, 2019, 9, 14896.	1.6	13
47	Error-prone bypass of DNA lesions during lagging-strand replication is a common source of germline and cancer mutations. Nature Genetics, 2019, 51, 36-41.	9.4	28
48	Evolution and development of the cartilaginous skull: From a lancelet towards a human face. Seminars in Cell and Developmental Biology, 2019, 91, 2-12.	2.3	22
49	High-contrast differentiation resolution 3D imaging of rodent brain by X-ray computed microtomography. Journal of Instrumentation, 2018, 13, C02039-C02039.	0.5	12
50	Schwann cell precursor: a neural crest cell in disguise?. Developmental Biology, 2018, 444, S25-S35.	0.9	112
51	A quantitative analysis of 3D-cell distribution in regenerative muscle-skeletal system with synchrotron X-ray computed microtomography. Scientific Reports, 2018, 8, 14145.	1.6	7
52	Supracellular contractions propel migration. Science, 2018, 362, 290-291.	6.0	1
53	Striking parallels between carotid body glomus cell and adrenal chromaffin cell development. Developmental Biology, 2018, 444, S308-S324.	0.9	22
54	Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage. ELife, 2018, 7, .	2.8	28

#	Article	IF	CITATIONS
55	Chemical synapses without synaptic vesicles: Purinergic neurotransmission through a CALHM1 channel-mitochondrial signaling complex. Science Signaling, 2018, 11, .	1.6	69
56	RNA velocity of single cells. Nature, 2018, 560, 494-498.	13.7	2,602
57	Murine neural crest stem cells and embryonic stem cell-derived neuron precursors survive and differentiate after transplantation in a model of dorsal root avulsion. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 129-137.	1.3	20
58	Nerve-associated neural crest: peripheral glial cells generate multiple fates in the body. Current Opinion in Genetics and Development, 2017, 45, 10-14.	1.5	42
59	Superficial cells are selfâ€renewing chondrocyte progenitors, which form the articular cartilage in juvenile mice. FASEB Journal, 2017, 31, 1067-1084.	0.2	92
60	Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla. Science, 2017, 357, .	6.0	251
61	Specification, plasticity and evolutionary origin of peripheral glial cells. Current Opinion in Neurobiology, 2017, 47, 196-202.	2.0	57
62	Heterogeneity and Developmental Connections between Cell Types Inhabiting Teeth. Frontiers in Physiology, 2017, 8, 376.	1.3	31
63	Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage. ELife, 2017, 6, .	2.8	46
64	Spotlight on the Schwann cells during the regeneration. Stem Cell Investigation, 2016, 3, 74-74.	1.3	2
65	The Nervous System Orchestrates and Integrates Craniofacial Development: A Review. Frontiers in Physiology, 2016, 7, 49.	1.3	39
66	Neural circuitry gets rewired. Science, 2016, 354, 833-834.	6.0	12
67	Analysis of neural crest–derived clones reveals novel aspects of facial development. Science Advances, 2016, 2, e1600060.	4.7	68
68	Use of micro computed-tomography and 3D printing for reverse engineering of mouse embryo nasal capsule. Journal of Instrumentation, 2016, 11, C03006-C03006.	0.5	26
69	Molecular differences between stromal cell populations from deciduous and permanent human teeth. Stem Cell Research and Therapy, 2015, 6, 59.	2.4	19
70	Three-dimensional Imaging Reveals New Compartments and Structural Adaptations in Odontoblasts. Journal of Dental Research, 2015, 94, 945-954.	2.5	32
71	Mutations in the Endothelin Receptor Type A Cause Mandibulofacial Dysostosis with Alopecia. American Journal of Human Genetics, 2015, 96, 519-531.	2.6	47
72	Serotonin Mediates Maternal Effects and Directs Developmental and Behavioral Changes in the Progeny of Snails. Cell Reports, 2015, 12, 1144-1158.	2.9	34

#	Article	IF	CITATIONS
73	<scp>MYC</scp> proteins promote neuronal differentiation by controlling the mode of progenitor cell division. EMBO Reports, 2014, 15, 383-391.	2.0	53
74	Nerves transport stem-like cells generating parasympathetic neurons. Cell Cycle, 2014, 13, 2805-2806.	1.3	2
75	A paradigm shift in neurobiology: peripheral nerves deliver cellular material and control development. Zoology, 2014, 117, 293-294.	0.6	7
76	Glial origin of mesenchymal stem cells in a tooth model system. Nature, 2014, 513, 551-554.	13.7	347
77	Non-canonical functions of the peripheral nerve. Experimental Cell Research, 2014, 321, 17-24.	1.2	48
78	Parasympathetic neurons originate from nerve-associated peripheral glial progenitors. Science, 2014, 345, 82-87.	6.0	181
79	Progenitors of the protochordate ocellus as an evolutionary origin of the neural crest. EvoDevo, 2013, 4, 12.	1.3	24
80	The transcription factor Hmx1 and growth factor receptor activities control sympathetic neurons diversification. EMBO Journal, 2013, 32, 1613-1625.	3.5	45
81	Positional differences of axon growth rates between sensory neurons encoded by runx3. EMBO Journal, 2012, 31, 3718-3729.	3.5	37
82	Sox2 and Mitf cross-regulatory interactions consolidate progenitor and melanocyte lineages in the cranial neural crest. Development (Cambridge), 2012, 139, 397-410.	1.2	154
83	Glial versus melanocyte cell fate choice: Schwann cell precursors as a cellular origin of melanocytes. Cellular and Molecular Life Sciences, 2010, 67, 3037-3055.	2.4	56
84	Schwann Cell Precursors from Nerve Innervation Are a Cellular Origin of Melanocytes in Skin. Cell, 2009, 139, 366-379.	13.5	477
85	Retrograde Signaling onto Ret during Motor Nerve Terminal Maturation. Journal of Neuroscience, 2008, 28, 963-975.	1.7	59