
A Barry Kay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2250802/publications.pdf Version: 2024-02-01

Δ Αλοον Κλυ

#	Article	IF	CITATIONS
1	Was Thomas Wharton Jones FRS, assistant to the infamous Dr Knox, the first to recognise the blood eosinophil?. Journal of the Royal College of Physicians of Edinburgh, The, 2019, 49, 78-83.	0.2	1
2	The contribution of Tony Frew (1955â€⊋018) to our understanding of Lateâ€Phase Allergic Reactions. Clinical and Experimental Allergy, 2019, 49, 398-399.	1.4	0
3	Landmarks in Allergy during the 19th Century. Chemical Immunology and Allergy, 2014, 100, 21-26.	1.7	5
4	CCL17/thymus and activation-regulated chemokine induces calcitonin gene–related peptide in human airway epithelial cells through CCR4. Journal of Allergy and Clinical Immunology, 2013, 132, 942-950.e3.	1.5	30
5	Calcitonin gene-related peptide– and vascular endothelial growth factor–positive inflammatory cells in late-phase allergic skin reactions in atopic subjects. Journal of Allergy and Clinical Immunology, 2011, 127, 232-237.	1.5	27
6	Eosinophils: Biological Properties and Role in Health and Disease. Clinical and Experimental Allergy, 2008, 38, 709-750.	1.4	702
7	Basal Expression of Bone Morphogenetic Protein Receptor Is Reduced in Mild Asthma. American Journal of Respiratory and Critical Care Medicine, 2008, 177, 1074-1081.	2.5	44
8	Remodeling and Airway Hyperresponsiveness but Not Cellular Inflammation Persist after Allergen Challenge in Asthma. American Journal of Respiratory and Critical Care Medicine, 2007, 175, 896-904.	2.5	128
9	The Role of T Lymphocytes in Asthma. , 2006, 91, 59-75.		108
10	The role of eosinophils in the pathogenesis of asthma. Trends in Molecular Medicine, 2005, 11, 148-152.	3.5	181
11	Late Asthmatic Reactions Induced by Inhalation of Allergen-derived T Cell Peptides. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 20-26.	2.5	69
12	Acute Allergen-Induced Airway Remodeling in Atopic Asthma. American Journal of Respiratory Cell and Molecular Biology, 2004, 31, 626-632.	1.4	115
13	The effects of T cell peptides in patients sensitive to cats. Clinical and Experimental Allergy Reviews, 2004, 4, 252-257.	0.3	1
14	Allergen immunotherapy with cat allergen peptides. Seminars in Immunopathology, 2004, 25, 391-399.	4.0	16
15	Anti–interleukin-5 therapy for asthma and hypereosinophilic syndrome. Immunology and Allergy Clinics of North America, 2004, 24, 645-666.	0.7	42
16	A role for eosinophils in airway remodelling in asthma. Trends in Immunology, 2004, 25, 477-482.	2.9	265
17	Anti–IL-5 (mepolizumab) therapy induces bone marrow eosinophil maturational arrest and decreases eosinophil progenitors in the bronchial mucosa of atopic asthmatics. Journal of Allergy and Clinical Immunology, 2003, 111, 714-719.	1.5	248
18	Immunomodulation in asthma: mechanisms and possible pitfalls. Current Opinion in Pharmacology, 2003, 3, 220-226.	1.7	35

A BARRY KAY

#	Article	IF	CITATIONS
19	The role of T lymphocytes in the pathogenesis of asthma. Journal of Allergy and Clinical Immunology, 2003, 111, 450-463.	1.5	521
20	Eosinophil's Role Remains Uncertain as Anti–Interleukin-5 only Partially Depletes Numbers in Asthmatic Airway. American Journal of Respiratory and Critical Care Medicine, 2003, 167, 199-204.	2.5	742
21	Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. Journal of Clinical Investigation, 2003, 112, 1029-1036.	3.9	688
22	The Relationship Between Allergen-Induced Tissue Eosinophilia and Markers of Repair and Remodeling in Human Atopic Skin. Journal of Immunology, 2002, 169, 4604-4612.	0.4	122
23	TH1/TH2 cytokines and inflammatory cells in skin biopsy specimens from patients with chronic idiopathic urticaria: Comparison with the allergen-induced late-phase cutaneous reaction. Journal of Allergy and Clinical Immunology, 2002, 109, 694-700.	1.5	244
24	Allergen-Derived T Cell Peptide-Induced Late Asthmatic Reactions Precede the Induction of Antigen-Specific Hyporesponsiveness in Atopic Allergic Asthmatic Subjects. Journal of Immunology, 2001, 167, 1734-1739.	0.4	171
25	Interleukin 5 regulates the isoform expression of its own receptor α-subunit. Blood, 2000, 95, 1600-1607.	0.6	104
26	Immunoglobulin E–independent Major Histocompatibility Complex–restricted T Cell Peptide Epitope–induced Late Asthmatic Reactions. Journal of Experimental Medicine, 1999, 189, 1885-1894.	4.2	328
27	Randomised, dose-ranging, placebo-controlled study of chimeric antibody to CD4 (keliximab) in chronic severe asthma. Lancet, The, 1998, 352, 1109-1113.	6.3	148
28	Enhanced expression of eotaxin and CCR3 mRNA and protein in atopic asthma. Association with airway hyperresponsiveness and predominant co-localization of eotaxin mRNA to bronchial epithelial and endothelial cells. European Journal of Immunology, 1997, 27, 3507-3516.	1.6	407
29	Human eosinophils express messenger RNA encoding RANTES and store and release biologically active RANTES protein. European Journal of Immunology, 1996, 26, 70-76.	1.6	84
30	Secretion of the eosinophil-active cytokines interleukin-5, granulocyte/macrophage colonystimulating factor and interleukin-3 by bronchoalveolar lavage CD4+ and CD8+ T cell lines in atopics asthmatics, and atopic and nonatopic controls. European Journal of Immunology, 1995, 25, 2727-2731.	1.6	108
31	Prednisolone Treatment in Asthma Is Associated with Modulation of Bronchoalveolar Lavage Cell Interleukin-4, Interleukin-5, and Interferon-Î ³ Cytokine Gene Expression. The American Review of Respiratory Disease, 1993, 148, 401-406.	2.9	302
32	Predominant T _{H2} -like Bronchoalveolar T-Lymphocyte Population in Atopic Asthma. New England Journal of Medicine, 1992, 326, 298-304.	13.9	2,719