Jeyaseelan Aravind

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2250331/publications.pdf Version: 2024-02-01

IEVASEELAN ADAVIND

#	Article	IF	CITATIONS
1	Environmental applications of chitosan and cellulosic biopolymers: A comprehensive outlook. Bioresource Technology, 2017, 242, 295-303.	9.6	220
2	Remediation of chromium contaminants using bacteria. International Journal of Environmental Science and Technology, 2012, 9, 183-193.	3.5	118
3	State of the art and future concept of food waste fermentation to bioenergy. Renewable and Sustainable Energy Reviews, 2016, 53, 547-557.	16.4	110
4	Production of polyhydroxyalkanoates from Ralstonia eutropha using paddy straw as cheap substrate. International Journal of Environmental Science and Technology, 2013, 10, 47-54.	3.5	56
5	Biohydrogen production from waste materials: benefits and challenges. International Journal of Environmental Science and Technology, 2020, 17, 559-576.	3.5	41
6	The Use of Response Surface Methodology as a Statistical Tool for Media Optimization in Lipase Production from the Dairy Effluent Isolate <i>Fusarium solani</i> . ISRN Biotechnology, 2013, 2013, 1-8.	1.9	36
7	Utilization of coconut oil mill waste as a substrate for optimized lipase production, oil biodegradation and enzyme purification studies in Staphylococcus pasteuri. Electronic Journal of Biotechnology, 2015, 18, 20-28.	2.2	32
8	An insight into microbial lipases and their environmental facet. International Journal of Environmental Science and Technology, 2015, 12, 1147-1162.	3.5	32
9	Response surface methodology optimization of nickel (II) removal using pigeon pea pod biosorbent. International Journal of Environmental Science and Technology, 2015, 12, 105-114.	3.5	28
10	Biofabrication of iron oxide nanoparticles as a potential photocatalyst for dye degradation with antimicrobial activity. International Journal of Environmental Science and Technology, 2019, 16, 8305-8314.	3.5	28
11	Emerging role of microalgae in heavy metal bioremediation. Journal of Basic Microbiology, 2022, 62, 330-347.	3.3	23
12	Enzymatic degradation of polyhydroxyalkanoate using lipase from Bacillus subtilis. International Journal of Environmental Science and Technology, 2016, 13, 1541-1552.	3.5	22
13	Gene cloning, expression, and characterization of the Bacillus amyloliquefaciens PS35 lipase. Brazilian Journal of Microbiology, 2015, 46, 1235-1243.	2.0	15
14	Pigeon pea (Cajanus cajan) pod as a novel eco-friendly biosorbent: a study on equilibrium and kinetics of Ni(II) biosorption. International Journal of Industrial Chemistry, 2013, 4, 25.	3.1	14
15	Batch and dynamics modeling of the biosorption of Cr(VI) from aqueous solutions by solid biomass waste from the biodiesel production. Environmental Progress and Sustainable Energy, 2014, 33, 342-352.	2.3	14
16	Tailored natural polymers: a useful eco-friendly sustainable tool for the mitigation of emerging pollutants: a review. International Journal of Environmental Science and Technology, 2021, 18, 2491-2510.	3.5	14
17	Optimizing the nutrient feeding strategy for PHA production by a novel strain of Enterobacter sp International Journal of Environmental Science and Technology, 2015, 12, 2757-2764.	3.5	12
18	Pretreatment of coconut mill effluent using celite-immobilized hydrolytic enzyme preparation fromStaphylococcus pasteuriand its impact on anaerobic digestion. Biotechnology Progress, 2015, 31, 1249-1258.	2.6	11

JEYASEELAN ARAVIND

#	Article	IF	CITATIONS
19	Chromium(VI) adsorption by Codium tomentosum: evidence for adsorption by porous media from sigmoidal dose–response curve. International Journal of Environmental Science and Technology, 2018, 15, 2595-2606.	3.5	10
20	Pilot-scale study of efficient vermicomposting of agro-industrial wastes. Environmental Technology (United Kingdom), 2012, 33, 975-981.	2.2	7
21	A Mini Review on Cyanophycin: Production, Analysis and Its Applications. Environmental Science and Engineering, 2016, , 49-58.	0.2	7
22	Isolation of Virgibacillus sp. strain KU4 from agricultural soil as a potential degrader of endocrine disruptor bisphenol-A. International Journal of Environmental Science and Technology, 2018, 15, 2545-2550.	3.5	6
23	Microplastics menace: the new emerging lurking environmental issue, a review on sampling and quantification in aquatic environments. International Journal of Environmental Science and Technology, 2023, 20, 1081-1094.	3.5	4
24	Biohydrogen Production Perspectives from Organic Waste with Focus on Asia. , 2019, , 413-435.		2
25	Plant polysaccharides-based adsorbents. , 2021, , 53-72.		2
26	Techniques for the detection and quantification of emerging contaminants. ChemistrySelect, 2023, 8, 2191-2218.	1.5	2
27	Bio-degradation of Reactive Dyes by Indigenous Bacteria Obtained from Textile Effluent Contaminated Site. Environmental Science and Engineering, 2016, , 169-177.	0.2	1
28	Optimization of Media Components for Production of Polyhydroxyalkanoates by Ralstonia eutropha Using Paddy Straw as Cheap Substrate. Environmental Science and Engineering, 2017, , 239-251.	0.2	1
29	Screening, Isolation and Development of Fungal Consortia with Textile Reactive Dyes Decolorizing Capability. Environmental Science and Engineering, 2017, , 295-303.	0.2	1
30	Nanotechnological approaches as a promising way for heavy metal mitigation in an aqueous system. Journal of Basic Microbiology, 2022, 62, 376-394.	3.3	1
31	Optimization of Biosurfactant Production and Crude Oil Emulsification by Bacillus Sp. Isolated from Hydrocarbon Contaminated Soil Sample. Environmental Science and Engineering, 2017, , 305-317. 	0.2	0
32	Lignin as the most abundant natural polymers as bio- and nanosorbents. , 2021, , 111-129.		0