
Konrad Kosiba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/225026/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microstructure and properties of TiB2-reinforced Ti–35Nb–7Zr–5Ta processed by laser-powder bed fusion. Journal of Materials Research, 2022, 37, 259-271.	2.6	8
2	Laser additive manufacturing of nano-TiC particles reinforced CoCrFeMnNi high-entropy alloy matrix composites with high strength and ductility. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 833, 142512.	5.6	46
3	Mechanical behavior and deformation mechanism of shape memory bulk metallic glass composites synthesized by powder metallurgy. Journal of Materials Science and Technology, 2022, 114, 42-54.	10.7	9
4	Thermoplastic embossing device to probe rheological changes of supercooled metallic liquids during rapid heating. Review of Scientific Instruments, 2022, 93, 033901.	1.3	1
5	Tuning the strength and ductility balance of a Co32Cr36Ni32 medium entropy alloy fabricated by selective laser melting: Effect of segregations along grain boundaries. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 840, 142923.	5.6	11
6	Laser remelting of AlSi10Mg(-Ni) alloy surfaces: influence of Ni content and cooling rate on the microstructure. International Journal of Advanced Manufacturing Technology, 2022, 120, 8117-8132.	3.0	3
7	Exceptional strength-ductility combination of additively manufactured high-entropy alloy matrix composites reinforced with TiC nanoparticles at room and cryogenic temperatures. Additive Manufacturing, 2022, 56, 102918.	3.0	4
8	Laser additive manufactured high-performance Fe-based composites with unique strengthening structure. Journal of Materials Science and Technology, 2021, 89, 242-252.	10.7	25
9	Plastic deformation of a Zr-based bulk metallic glass fabricated by selective laser melting. Journal of Materials Science and Technology, 2021, 60, 139-146.	10.7	36
10	Optimizing laser powder bed fusion of Ti-5Al-5V-5Mo-3Cr by artificial intelligence. Journal of Alloys and Compounds, 2021, 862, 158018.	5.5	15
11	Novel WC-reinforced iron-based composites with excellent mechanical properties synthesized by laser additive manufacturing: Underlying role of reinforcement weight fraction. Journal of Materials Processing Technology, 2021, 289, 116959.	6.3	28
12	Understanding tensile and creep properties of WC reinforced nickel-based composites fabricated by selective laser melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 802, 140431.	5.6	32
13	Phase Formation, Microstructure and Mechanical Properties of Mg67Ag33 as Potential Biomaterial. Metals, 2021, 11, 461.	2.3	0
14	Role of laser scan strategies in defect control, microstructural evolution and mechanical properties of steel matrix composites prepared by laser additive manufacturing. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 462-474.	4.9	23
15	Additive manufacturing of a quasicrystal-forming Al95Fe2Cr2Ti1 alloy with remarkable high-temperature strength and ductility. Additive Manufacturing, 2021, 41, 101960.	3.0	3
16	Microstructural evolution and properties of a Ti-Nb-Ta-Zr-O prepared by high-pressure torsion. Journal of Alloys and Compounds, 2021, 864, 158828.	5.5	11
17	Electrodeposition of Fe–Mn alloys from chloride-based bath: A preliminary study for biomedical applications. Journal of Materials Research and Technology, 2021, 13, 2527-2535.	5.8	6
18	CuZr-based bulk metallic glass and glass matrix composites fabricated by selective laser melting. Journal of Materials Science and Technology, 2021, 81, 139-150.	10.7	21

Konrad Kosiba

#	Article	IF	CITATIONS
19	Oligocrystalline microstructure in an additively manufactured biocompatible Ti-Nb-Zr-Ta alloy. Materials Letters, 2020, 262, 127149.	2.6	10
20	Guiding shear bands in bulk metallic glasses using stress fields: A perspective from the activation of flow units. Physical Review B, 2020, 102, .	3.2	12
21	Viscous Flow of Supercooled Liquid in a Zr-Based Bulk Metallic Glass Synthesized by Additive Manufacturing. Materials, 2020, 13, 3803.	2.9	14
22	Characterization of dissimilar friction stir welded lap joints of AA5083 and GL D36 steel. Journal of Materials Research and Technology, 2020, 9, 15132-15142.	5.8	22
23	Achieving high strength and high ductility in WC-reinforced iron-based composites by laser additive manufacturing. Additive Manufacturing, 2020, 35, 101195.	3.0	18
24	Processing a biocompatible Ti–35Nb–7Zr–5Ta alloy by selective laser melting. Journal of Materials Research, 2020, 35, 1143-1153.	2.6	24
25	Microstructure, phase formation and properties of rapid solidified Al–Fe–Cr–Ti alloys. Materials Science and Technology, 2020, 36, 1205-1214.	1.6	5
26	Influence of the deformation rate on phase stability and mechanical properties of a Ti–29Nb–13Ta–4.6Zr– <i>x</i> O alloy analyzed by <i>in situ</i> high-energy X-ray diffraction during compression tests. Journal of Materials Research, 2020, 35, 1777-1789.	2.6	7
27	Corrosion of Al-3.5Cu-1.5ÂMg–1Si alloy prepared by selective laser melting and heat treatment. Intermetallics, 2020, 124, 106871.	3.9	14
28	Mechanical performance and corrosion behaviour of Zr-based bulk metallic glass produced by selective laser melting. Materials and Design, 2020, 189, 108532.	7.0	48
29	Phase formation of a biocompatible Ti-based alloy under kinetic constraints studied via in-situ high-energy X-ray diffraction. Progress in Natural Science: Materials International, 2020, 30, 432-436.	4.4	4
30	Fast-current-heating devices to study <i>in situ</i> phase formation in metallic glasses by using high-energy synchrotron radiation. Review of Scientific Instruments, 2020, 91, 073901.	1.3	9
31	<i>In situ</i> XRD Study of Rapid Crystallization of Metallic Glasses Using Novel Experimental Setup for Flash-Annealing. Acta Physica Polonica A, 2020, 137, 852-854.	0.5	Ο
32	Comparison of Cu–Al–Ni–Mn–Zr shape memory alloy prepared by selective laser melting and conventional powder metallurgy. Transactions of Nonferrous Metals Society of China, 2020, 30, 3322-3332.	4.2	11
33	Modulating heterogeneity and plasticity in bulk metallic glasses: Role of interfaces on shear banding. International Journal of Plasticity, 2019, 119, 156-170.	8.8	88
34	Glass-forming ability, phase formation and mechanical properties of glass-forming Cu-Hf-Zr alloys. Progress in Natural Science: Materials International, 2019, 29, 576-581.	4.4	8
35	Rapid and partial crystallization to design ductile CuZr-based bulk metallic glass composites. Materials and Design, 2018, 139, 132-140.	7.0	46
36	Experimental determination of cooling rates in selectively laser-melted eutectic Al-33Cu. Additive Manufacturing, 2018, 22, 753-757.	3.0	76

Konrad Kosiba

#	ARTICLE	IF	CITATIONS
37	Transient nucleation and microstructural design in flash-annealed bulk metallic glasses. Acta Materialia, 2017, 127, 416-425.	7.9	57
38	Serrated flow of CuZr-based bulk metallic glasses probed by nanoindentation: Role of the activation barrier, size and distribution of shear transformation zones. Journal of Non-Crystalline Solids, 2017, 459, 130-141.	3.1	58
39	Inductive flash-annealing of bulk metallic glasses. Scientific Reports, 2017, 7, 2151.	3.3	39
40	On the valence electron theory to estimate the transformation temperatures of Cu–Al-based shape memory alloys. Journal of Materials Research, 2017, 32, 3165-3174.	2.6	11
41	Effect of Co additions on the phase formation, thermal stability, and mechanical properties of rapidly solidified Ti–Cu-based alloys. Journal of Materials Research, 2017, 32, 2578-2584.	2.6	2
42	Towards the Better: Intrinsic Property Amelioration in Bulk Metallic Glasses. Scientific Reports, 2016, 6, 27271.	3.3	17
43	Microstructural Evolution and Mechanical Behaviour of Metastable Cu–Zr–Co Alloys. Journal of Materials Science and Technology, 2014, 30, 584-589.	10.7	17
44	Predicted glass-forming ability of Cu-Zr-Co alloys and their crystallization behavior. Journal of Applied Physics, 2013, 113, 123505.	2.5	10