
Michal Marzec

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2250015/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1). Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20852-20857.	7.1	620
2	GRP94: An HSP90-like protein specialized for protein folding and quality control in the endoplasmic reticulum. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 774-787.	4.1	318
3	STAT3- and DNA methyltransferase 1-mediated epigenetic silencing of SHP-1 tyrosine phosphatase tumor suppressor gene in malignant T lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6948-6953.	7.1	240
4	Mantle cell lymphoma cells express predominantly cyclin D1a isoform and are highly sensitive to selective inhibition of CDK4 kinase activity. Blood, 2006, 108, 1744-1750.	1.4	145
5	Nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) oncoprotein induces the T regulatory cell phenotype by activating STAT3. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9964-9969.	7.1	135
6	Oncogenic tyrosine kinase NPM/ALK induces activation of the rapamycin-sensitive mTOR signaling pathway. Oncogene, 2007, 26, 5606-5614.	5.9	95
7	Oncogenic tyrosine kinase NPM/ALK induces activation of the MEK/ERK signaling pathway independently of c-Raf. Oncogene, 2007, 26, 813-821.	5.9	80
8	Differential Effects of Interleukin-2 and Interleukin-15 versus Interleukin-21 on CD4+ Cutaneous T-Cell Lymphoma Cells. Cancer Research, 2008, 68, 1083-1091.	0.9	79
9	Activation of Mammalian Target of Rapamycin in Transformed B Lymphocytes Is Nutrient Dependent but Independent of Akt, Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase Kinase, Insulin Growth Factor-I, and Serum. Cancer Research, 2005, 65, 7800-7808.	0.9	74
10	Inhibition of ALK enzymatic activity in T-cell lymphoma cells induces apoptosis and suppresses proliferation and STAT3 phosphorylation independently of Jak3. Laboratory Investigation, 2005, 85, 1544-1554.	3.7	64
11	IL-2– and IL-15–induced activation of the rapamycin-sensitive mTORC1 pathway in malignant CD4+ T lymphocytes. Blood, 2008, 111, 2181-2189.	1.4	62
12	γc-Signaling Cytokines Induce a Regulatory T Cell Phenotype in Malignant CD4+ T Lymphocytes. Journal of Immunology, 2008, 181, 2506-2512.	0.8	56
13	Endoplasmic Reticulum Chaperone Glucose-Regulated Protein 94 Is Essential for Proinsulin Handling. Diabetes, 2019, 68, 747-760.	0.6	52
14	Plasma gelsolin modulates cellular response to sphingosine 1-phosphate. American Journal of Physiology - Cell Physiology, 2010, 299, C1516-C1523.	4.6	48
15	Simultaneous Inhibition of mTOR-Containing Complex 1 (mTORC1) and MNK Induces Apoptosis of Cutaneous T-Cell Lymphoma (CTCL) Cells. PLoS ONE, 2011, 6, e24849.	2.5	46
16	Constitutive activation of mTOR signaling pathway in post-transplant lymphoproliferative disorders. Laboratory Investigation, 2007, 87, 29-39.	3.7	45
17	Anaplastic Lymphoma Kinase (ALK)-Induced Malignancies: Novel Mechanisms of Cell Transformation and Potential Therapeutic Approaches. Seminars in Oncology, 2009, 36, S27-S35.	2.2	39
18	Expression and Oncogenic Role of Brk (PTK6/Sik) Protein Tyrosine Kinase in Lymphocytes. American Journal of Pathology, 2006, 168, 1631-1641.	3.8	37

MICHAL MARZEC

#	Article	IF	CITATIONS
19	Peroxisome Proliferator-Activated Receptor Î ³ Promotes Lymphocyte Survival through Its Actions on Cellular Metabolic Activities. Journal of Immunology, 2006, 177, 3737-3745.	0.8	34
20	Oncogenic kinase NPM/ALK induces expression of HIF1α mRNA. Oncogene, 2011, 30, 1372-1378.	5.9	32
21	Decreased lactate concentration and glycolytic enzyme expression reflect inhibition of mTOR signal transduction pathway in Bâ€cell lymphoma. NMR in Biomedicine, 2013, 26, 106-114.	2.8	27
22	PU.1 Activates Transcription of SHP-1 Gene in Hematopoietic Cells. Journal of Biological Chemistry, 2007, 282, 6316-6323.	3.4	26
23	Malignant Transformation of CD4+T Lymphocytes Mediated by Oncogenic Kinase NPM/ALK Recapitulates IL-2–Induced Cell Signaling and Gene Expression Reprogramming. Journal of Immunology, 2013, 191, 6200-6207.	0.8	21
24	A Human Variant of Glucose-Regulated Protein 94 That Inefficiently Supports IGF Production. Endocrinology, 2016, 157, 1914-1928.	2.8	19
25	Activation of mTORC1 Signaling Pathway in AIDS-Related Lymphomas. American Journal of Pathology, 2009, 175, 817-824.	3.8	18
26	Glucose-Regulated Protein 94 (GRP94): A Novel Regulator of Insulin-Like Growth Factor Production. Cells, 2020, 9, 1844.	4.1	16
27	The intermediate proteasome is constitutively expressed in pancreatic beta cells and upregulated by stimulatory, low concentrations of interleukin 1Âl². PLoS ONE, 2020, 15, e0222432.	2.5	13
28	The inducible β5i proteasome subunit contributes to proinsulin degradation in GRP94-deficient β-cells and is overexpressed in type 2 diabetes pancreatic islets. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E892-E900.	3.5	7
29	Peanut-Shaped Gold Nanoparticles with Shells of Ceragenin CSA-131 Display the Ability to Inhibit Ovarian Cancer Growth In Vitro and in a Tumor Xenograft Model. Cancers, 2021, 13, 5424.	3.7	5
30	MCPIP1 is a novel link between diabetogenic conditions and impaired insulin secretory capacity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166199.	3.8	4
31	Enhancer of Zeste Homolog 2 (EZH2) Mediates Glucolipotoxicity-Induced Apoptosis in β-Cells. International Journal of Molecular Sciences, 2020, 21, 8016.	4.1	3
32	Defective Proinsulin Handling Modulates the MHC I Bound Peptidome and Activates the Inflammasome in β-Cells. Biomedicines, 2022, 10, 814.	3.2	3
33	Prediction and Early Detection of Response by NMR Spectroscopy and Imaging. PET Clinics, 2012, 7, 119-126.	3.0	2
34	In silico approach to predict pancreatic \hat{l}^2 -cells classically secreted proteins. Bioscience Reports, 2020, 40, .	2.4	1
35	Title is missing!. , 2020, 15, e0222432.		0

#	Article	IF	CITATIONS
37	Title is missing!. , 2020, 15, e0222432.		0
38	Title is missing!. , 2020, 15, e0222432.		0
39	Title is missing!. , 2020, 15, e0222432.		0
40	Title is missing!. , 2020, 15, e0222432.		0