
Ze-Xian Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2249758/publications.pdf Version: 2024-02-01

75-XIAN | 111

#	Article	IF	CITATIONS
1	qPTMplants: an integrative database of quantitative post-translational modifications in plants. Nucleic Acids Research, 2022, 50, D1491-D1499.	14.5	17
2	<i>Smad4</i> Deficiency Promotes Pancreatic Cancer Immunogenicity by Activating the Cancerâ€Autonomous DNA‧ensing Signaling Axis. Advanced Science, 2022, 9, e2103029.	11.2	7
3	CircVPS13C promotes pituitary adenoma growth by decreasing the stability of IFITM1 mRNA via interacting with RRBP1. Oncogene, 2022, 41, 1550-1562.	5.9	12
4	Development and validation of a transcriptomics-based gene signature to predict distant metastasis and guide induction chemotherapy in locoregionally advanced nasopharyngeal carcinoma. European Journal of Cancer, 2022, 163, 26-34.	2.8	10
5	ADDAGMA: A database for domestic animal gut microbiome atlas. Computational and Structural Biotechnology Journal, 2022, 20, 891-898.	4.1	10
6	Phosphorylated NFS1 weakens oxaliplatin-based chemosensitivity of colorectal cancer by preventing PANoptosis. Signal Transduction and Targeted Therapy, 2022, 7, 54.	17.1	84
7	DrugCVar: a platform for evidence-based drug annotation for genetic variants in cancer. Bioinformatics, 2022, 38, 3094-3098.	4.1	1
8	Changing causes of death in persons with haematological cancers 1975–2016. Leukemia, 2022, 36, 1850-1860.	7.2	12
9	LncRNA TMPO-AS1 promotes esophageal squamous cell carcinoma progression by forming biomolecular condensates with FUS and p300 to regulate TMPO transcription. Experimental and Molecular Medicine, 2022, 54, 834-847.	7.7	14
10	gutMEGA: a database of the human gut MEtaGenome Atlas. Briefings in Bioinformatics, 2021, 22, .	6.5	22
11	CDK1/2/5 inhibition overcomes IFNG-mediated adaptive immune resistance in pancreatic cancer. Gut, 2021, 70, 890-899.	12.1	59
12	An Upstream Open Reading Frame in Phosphatase and Tensin Homolog Encodes a Circuit Breaker of Lactate Metabolism. Cell Metabolism, 2021, 33, 128-144.e9.	16.2	37
13	iCysMod: an integrative database for protein cysteine modifications in eukaryotes. Briefings in Bioinformatics, 2021, 22, .	6.5	12
14	pCysMod: Prediction of Multiple Cysteine Modifications Based on Deep Learning Framework. Frontiers in Cell and Developmental Biology, 2021, 9, 617366.	3.7	21
15	Frequent amplification of HDAC genes and efficacy of HDAC inhibitor chidamide and PD-1 blockade combination in soft tissue sarcoma. , 2021, 9, e001696.		42
16	Dickkopf 1 impairs the tumor response to PD-1 blockade by inactivating CD8+ T cells in deficient mismatch repair colorectal cancer. , 2021, 9, e001498.		28
17	MYC-Activated LncRNA <i>MNX1-AS1</i> Promotes the Progression of Colorectal Cancer by Stabilizing YB1. Cancer Research, 2021, 81, 2636-2650.	0.9	48
18	Fatal Infections Among Cancer Patients: A Population-Based Study in the United States. Infectious Diseases and Therapy, 2021, 10, 871-895.	4.0	38

#	Article	IF	CITATIONS
19	The lncRNA XIST/miRâ€125bâ€2â€3p axis modulates cell proliferation and chemotherapeutic sensitivity via targeting Wee1 in colorectal cancer. Cancer Medicine, 2021, 10, 2423-2441.	2.8	21
20	Loss of mitochondrial aconitase promotes colorectal cancer progression via SCD1-mediated lipid remodeling. Molecular Metabolism, 2021, 48, 101203.	6.5	22
21	DNA methylation regulator-mediated modification patterns and tumor microenvironment characterization in gastric cancer. Molecular Therapy - Nucleic Acids, 2021, 24, 695-710.	5.1	25
22	FTO downregulation mediated by hypoxia facilitates colorectal cancer metastasis. Oncogene, 2021, 40, 5168-5181.	5.9	77
23	Insulin signaling regulates longevity through protein phosphorylation in Caenorhabditis elegans. Nature Communications, 2021, 12, 4568.	12.8	38
24	NSUN2-mediated RNA 5-methylcytosine promotes esophageal squamous cell carcinoma progression via LIN28B-dependent GRB2 mRNA stabilization. Oncogene, 2021, 40, 5814-5828.	5.9	59
25	Multiomics analysis of tumor mutational burden across cancer types. Computational and Structural Biotechnology Journal, 2021, 19, 5637-5646.	4.1	10
26	Inflammatory cytokine–regulated tRNA-derived fragment tRF-21 suppresses pancreatic ductal adenocarcinoma progression. Journal of Clinical Investigation, 2021, 131, .	8.2	36
27	iCAV: an integrative database of cancer-associated viruses. Database: the Journal of Biological Databases and Curation, 2021, 2021, .	3.0	0
28	AMPKα1 confers survival advantage of colorectal cancer cells under metabolic stress by promoting redox balance through the regulation of glutathione reductase phosphorylation. Oncogene, 2020, 39, 637-650.	5.9	16
29	CrossICC: iterative consensus clustering of cross-platform gene expression data without adjusting batch effect. Briefings in Bioinformatics, 2020, 21, 1818-1824.	6.5	8
30	Deep learning based prediction of reversible HAT/HDAC-specific lysine acetylation. Briefings in Bioinformatics, 2020, 21, 1798-1805.	6.5	24
31	Inhibition of fatty acid catabolism augments the efficacy of oxaliplatin-based chemotherapy in gastrointestinal cancers. Cancer Letters, 2020, 473, 74-89.	7.2	63
32	Circulating tumor DNA methylation profiles enable early diagnosis, prognosis prediction, and screening for colorectal cancer. Science Translational Medicine, 2020, 12, .	12.4	260
33	Systematic analysis of the transcriptome in smallâ€cell carcinoma of the oesophagus reveals its immune microenvironment. Clinical and Translational Immunology, 2020, 9, e1173.	3.8	2
34	Direct Tumor Killing and Immunotherapy through Anti-SerpinB9 Therapy. Cell, 2020, 183, 1219-1233.e18.	28.9	54
35	Development and validation of metabolism-related gene signature in prognostic prediction of gastric cancer. Computational and Structural Biotechnology Journal, 2020, 18, 3217-3229.	4.1	14
36	VDR–SOX2 signaling promotes colorectal cancer stemness and malignancy in an acidic microenvironment. Signal Transduction and Targeted Therapy, 2020, 5, 183.	17.1	30

#	Article	IF	CITATIONS
37	Ubiquitinome Profiling Reveals the Landscape of Ubiquitination Regulation in Rice Young Panicles. Genomics, Proteomics and Bioinformatics, 2020, 18, 305-320.	6.9	18
38	METTL3 Promotes the Progression of Gastric Cancer via Targeting the MYC Pathway. Frontiers in Oncology, 2020, 10, 115.	2.8	76
39	Long noncoding RNA AGPG regulates PFKFB3-mediated tumor glycolytic reprogramming. Nature Communications, 2020, 11, 1507.	12.8	121
40	Inhibiting MARSs reduces hyperhomocysteinemiaâ€associated neural tube and congenital heart defects. EMBO Molecular Medicine, 2020, 12, e9469.	6.9	21
41	Systematic Analysis of the Aberrances and Functional Implications of Ferroptosis in Cancer. IScience, 2020, 23, 101302.	4.1	128
42	ZIC2 is downregulated and represses tumor growth <i>via</i> the regulation of STAT3 in breast cancer. International Journal of Cancer, 2020, 147, 505-518.	5.1	20
43	Deep learning based prediction of species-specific protein S-glutathionylation sites. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140422.	2.3	17
44	Development and validation of the immune signature to predict distant metastasis in patients with nasopharyngeal carcinoma. , 2020, 8, e000205.		26
45	Evaluation of <i>POLE</i> and <i>POLD1</i> Mutations as Biomarkers for Immunotherapy Outcomes Across Multiple Cancer Types. JAMA Oncology, 2019, 5, 1504.	7.1	287
46	The MRVI1-AS1/ATF3 signaling loop sensitizes nasopharyngeal cancer cells to paclitaxel by regulating the Hippo–TAZ pathway. Oncogene, 2019, 38, 6065-6081.	5.9	47
47	Precise Prediction of Calpain Cleavage Sites and Their Aberrance Caused by Mutations in Cancer. Frontiers in Genetics, 2019, 10, 715.	2.3	26
48	Clonal Mutations Activate the NF-κB Pathway to Promote Recurrence of Nasopharyngeal Carcinoma. Cancer Research, 2019, 79, 5930-5943.	0.9	32
49	Eukaryotic initiation factor 4A2 promotes experimental metastasis and oxaliplatin resistance in colorectal cancer. Journal of Experimental and Clinical Cancer Research, 2019, 38, 196.	8.6	38
50	Excessive miR-25-3p maturation via N6-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression. Nature Communications, 2019, 10, 1858.	12.8	242
51	Dysregulation, functional implications, and prognostic ability of the circadian clock across cancers. Cancer Medicine, 2019, 8, 1710-1720.	2.8	23
52	MSC-regulated lncRNA MACC1-AS1 promotes stemness and chemoresistance through fatty acid oxidation in gastric cancer. Oncogene, 2019, 38, 4637-4654.	5.9	201
53	IDDF2019-ABS-0316â€Long non-coding RNA CRCAL-2 promotes gastric cancer metastasis by activating wnt/beta-catenin pathway via stabilizing the nuclear transport protein RAN. , 2019, , .		1
54	LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer. Molecular Cancer, 2019, 18, 174.	19.2	315

#	Article	IF	CITATIONS
55	PIWI-interacting RNA-36712 restrains breast cancer progression and chemoresistance by interaction with SEPW1 pseudogene SEPW1P RNA. Molecular Cancer, 2019, 18, 9.	19.2	139
56	qPhos: a database of protein phosphorylation dynamics in humans. Nucleic Acids Research, 2019, 47, D451-D458.	14.5	44
57	Modulation of Redox Homeostasis by Inhibition of MTHFD2 in Colorectal Cancer: Mechanisms and Therapeutic Implications. Journal of the National Cancer Institute, 2019, 111, 584-596.	6.3	125
58	Liquid biopsies to track trastuzumab resistance in metastatic HER2-positive gastric cancer. Gut, 2019, 68, 1152-1161.	12.1	118
59	The Heterogeneity Between Lynch-Associated and Sporadic MMR Deficiency in Colorectal Cancers. Journal of the National Cancer Institute, 2018, 110, 975-984.	6.3	32
60	ME1 Regulates NADPH Homeostasis to Promote Gastric Cancer Growth and Metastasis. Cancer Research, 2018, 78, 1972-1985.	0.9	86
61	The genomic landscape of small cell carcinoma of the esophagus. Cell Research, 2018, 28, 771-774.	12.0	23
62	THANATOS: an integrative data resource of proteins and post-translational modifications in the regulation of autophagy. Autophagy, 2018, 14, 296-310.	9.1	41
63	IDDF2018-ABS-0184â€LNCRNA AGPG regulates anabolism remodelling through affecting PFKFB3 stability in escc. , 2018, , .		0
64	The Clinical and Biomarker Association of Programmed Death Ligand 1 and its Spatial Heterogeneous Expression in Colorectal Cancer. Journal of Cancer, 2018, 9, 4325-4333.	2.5	16
65	PIWI-interacting RNA-54265 is oncogenic and a potential therapeutic target in colorectal adenocarcinoma. Theranostics, 2018, 8, 5213-5230.	10.0	115
66	Prediction of prkC-mediated protein serine/threonine phosphorylation sites for bacteria. PLoS ONE, 2018, 13, e0203840.	2.5	5
67	LncRNA CamK-A Regulates Ca2+-Signaling-Mediated Tumor Microenvironment Remodeling. Molecular Cell, 2018, 72, 71-83.e7.	9.7	119
68	Nicotinamide nucleotide transhydrogenase-mediated redox homeostasis promotes tumor growth and metastasis in gastric cancer. Redox Biology, 2018, 18, 246-255.	9.0	56
69	CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis. Oncogene, 2018, 37, 6025-6040.	5.9	211
70	Quantitative Dynamics of Proteome, Acetylome, and Succinylome during Stem-Cell Differentiation into Hepatocyte-like Cells. Journal of Proteome Research, 2018, 17, 2491-2498.	3.7	7
71	GPS-PAIL: prediction of lysine acetyltransferase-specific modification sites from protein sequences. Scientific Reports, 2016, 6, 39787.	3.3	88
72	Enhanced Purification of Ubiquitinated Proteins by Engineered Tandem Hybrid Ubiquitin-binding Domains (ThUBDs). Molecular and Cellular Proteomics, 2016, 15, 1381-1396.	3.8	15

#	Article	IF	CITATIONS
73	Pyruvate Kinase M2 Activates mTORC1 by Phosphorylating AKT1S1. Scientific Reports, 2016, 6, 21524.	3.3	92
74	Computational screen and experimental validation of anti-influenza effects of quercetin and chlorogenic acid from traditional Chinese medicine. Scientific Reports, 2016, 6, 19095.	3.3	48
75	dbPAF: an integrative database of protein phosphorylation in animals and fungi. Scientific Reports, 2016, 6, 23534.	3.3	78
76	A new method for classifying different phenotypes of kidney transplantation. Cell Biology and Toxicology, 2016, 32, 323-332.	5.3	14
77	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
78	Enhanced Purification of Ubiquitinated Proteins by Engineered Tandem Hybrid Ubiquitin-binding Domains (ThUBDs). Molecular and Cellular Proteomics, 2016, 15, 1381-1396.	3.8	44
79	dbPSP: a curated database for protein phosphorylation sites in prokaryotes. Database: the Journal of Biological Databases and Curation, 2015, 2015, bav031.	3.0	23
80	Molecular Docking of Potential Inhibitors for Influenza H7N9. Computational and Mathematical Methods in Medicine, 2015, 2015, 1-8.	1.3	30
81	Phosphoproteomic Analysis of the Highly-Metastatic Hepatocellular Carcinoma Cell Line, MHCC97-H. International Journal of Molecular Sciences, 2015, 16, 4209-4225.	4.1	22
82	Reconfiguring phosphorylation signaling by genetic polymorphisms affects cancer susceptibility. Journal of Molecular Cell Biology, 2015, 7, 187-202.	3.3	17
83	MiCroKiTS 4.0: a database of midbody, centrosome, kinetochore, telomere and spindle. Nucleic Acids Research, 2015, 43, D328-D334.	14.5	23
84	Analysis of phosphorylation sites on autophagy proteins. Protein and Cell, 2015, 6, 698-701.	11.0	5
85	Computational Identification of Protein Kinases and Kinase-Specific Substrates in Plants. Methods in Molecular Biology, 2015, 1306, 195-205.	0.9	1
86	Prediction of Serine/Threonine Phosphorylation Sites in Bacteria Proteins. Advances in Experimental Medicine and Biology, 2015, 827, 275-285.	1.6	10
87	dbPPT: a comprehensive database of protein phosphorylation in plants. Database: the Journal of Biological Databases and Curation, 2014, 2014, bau121.	3.0	45
88	Systematic Analysis of the Phosphoproteome and Kinase-substrate Networks in the Mouse Testis. Molecular and Cellular Proteomics, 2014, 13, 3626-3638.	3.8	38
89	GPS-SUMO: a tool for the prediction of sumoylation sites and SUMO-interaction motifs. Nucleic Acids Research, 2014, 42, W325-W330.	14.5	417
90	HemI: A Toolkit for Illustrating Heatmaps. PLoS ONE, 2014, 9, e111988.	2.5	963

#	Article	IF	CITATIONS
91	Systematic characterization of small RNAome during zebrafish early developmental stages. BMC Genomics, 2014, 15, 117.	2.8	27
92	EKPD: a hierarchical database of eukaryotic protein kinases and protein phosphatases. Nucleic Acids Research, 2014, 42, D496-D502.	14.5	52
93	CPLM: a database of protein lysine modifications. Nucleic Acids Research, 2014, 42, D531-D536.	14.5	155
94	Computationally characterizing and comprehensive analysis of zinc-binding sites in proteins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 171-180.	2.3	10
95	Systematic analysis of the in situ crosstalk of tyrosine modifications reveals no additional natural selection on multiply modified residues. Scientific Reports, 2014, 4, 7331.	3.3	39
96	The human kinaseâ€substrate phosphorylation network rewired by genetic polymorphisms is heavily associated with cancers (984.3). FASEB Journal, 2014, 28, 984.3.	0.5	0
97	Towards a better understanding of the novel avian-origin H7N9 influenza A virus in China. Scientific Reports, 2013, 3, 2318.	3.3	17
98	Systematic analysis of the Plk-mediated phosphoregulation in eukaryotes. Briefings in Bioinformatics, 2013, 14, 344-360.	6.5	29
99	The structure of the ARE-binding domains of Hu antigen R (HuR) undergoes conformational changes during RNA binding. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 373-380.	2.5	90
100	UUCD: a family-based database of ubiquitin and ubiquitin-like conjugation. Nucleic Acids Research, 2013, 41, D445-D451.	14.5	99
101	Phosphoproteomicsâ€based network medicine. FEBS Journal, 2013, 280, 5696-5704.	4.7	16
102	Ubiquitin and Ubiquitin-Like Conjugations in Complex Diseases: A Computational Perspective. Translational Bioinformatics, 2013, , 171-187.	0.0	1
103	Systematic Analysis of Protein Phosphorylation Networks From Phosphoproteomic Data. Molecular and Cellular Proteomics, 2012, 11, 1070-1083.	3.8	161
104	GPS-MBA: Computational Analysis of MHC Class II Epitopes in Type 1 Diabetes. PLoS ONE, 2012, 7, e33884.	2.5	9
105	GPS-ARM: Computational Analysis of the APC/C Recognition Motif by Predicting D-Boxes and KEN-Boxes. PLoS ONE, 2012, 7, e34370.	2.5	44
106	GPS-PUP: computational prediction of pupylation sites in prokaryotic proteins. Molecular BioSystems, 2011, 7, 2737.	2.9	40
107	GPS-YNO2: computational prediction of tyrosine nitration sites in proteins. Molecular BioSystems, 2011, 7, 1197.	2.9	94
108	GPS-CCD: A Novel Computational Program for the Prediction of Calpain Cleavage Sites. PLoS ONE, 2011, 6, e19001.	2.5	94

#	Article	IF	CITATIONS
109	CPLA 1.0: an integrated database of protein lysine acetylation. Nucleic Acids Research, 2011, 39, D1029-D1034.	14.5	60
110	GPS 2.1: enhanced prediction of kinase-specific phosphorylation sites with an algorithm of motif length selection. Protein Engineering, Design and Selection, 2011, 24, 255-260.	2.1	217
111	Computational Analysis of Phosphoproteomics: Progresses and Perspectives. Current Protein and Peptide Science, 2011, 12, 591-601.	1.4	13
112	GPS-SNO: Computational Prediction of Protein S-Nitrosylation Sites with a Modified GPS Algorithm. PLoS ONE, 2010, 5, e11290.	2.5	223
113	PhosSNP for Systematic Analysis of Genetic Polymorphisms That Influence Protein Phosphorylation. Molecular and Cellular Proteomics, 2010, 9, 623-634.	3.8	72
114	MiCroKit 3.0: an integrated database of midbody, centrosome and kinetochore. Nucleic Acids Research, 2010, 38, D155-D160.	14.5	27
115	A Summary of Computational Resources for Protein Phosphorylation. Current Protein and Peptide Science, 2010, 11, 485-496.	1.4	53
116	Computational Prediction of Post-Translational Modification Sites in Proteins. , 0, , .		13