Marta Barenys

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/22497/publications.pdf

Version: 2024-02-01

623734 477307 32 892 14 29 citations g-index h-index papers 34 34 34 1379 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer's disease mice model. Journal of Controlled Release, 2019, 301, 62-75.	9.9	207
2	Comparison of the mouse Embryonic Stem cell Test, the rat Whole Embryo Culture and the Zebrafish Embryotoxicity Test as alternative methods for developmental toxicity testing of six 1,2,4-triazoles. Toxicology and Applied Pharmacology, 2011, 253, 103-111.	2.8	87
3	Developing and applying the adverse outcome pathway concept for understanding and predicting neurotoxicity. NeuroToxicology, 2017, 59, 240-255.	3.0	69
4	Epigallocatechin-3-gallate loaded PEGylated-PLGA nanoparticles: A new anti-seizure strategy for temporal lobe epilepsy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1073-1085.	3.3	60
5	Omnisphero: a high-content image analysis (HCA) approach for phenotypic developmental neurotoxicity (DNT) screenings of organoid neurosphere cultures in vitro. Archives of Toxicology, 2017, 91, 2017-2028.	4.2	56
6	Chronic exposure to MDMA (ecstasy) increases DNA damage in sperm and alters testes histopathology in male rats. Toxicology Letters, 2009, 191, 40-46.	0.8	44
7	Current Availability of Stem Cell-Based In Vitro Methods for Developmental Neurotoxicity (DNT) Testing. Toxicological Sciences, 2018, 165, 21-30.	3.1	43
8	Epigallocatechin gallate (EGCG) inhibits adhesion and migration of neural progenitor cells in vitro. Archives of Toxicology, 2017, 91, 827-837.	4.2	39
9	Comparative Human and Rat "Neurosphere Assay―for Developmental Neurotoxicity Testing. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2014, 59, 12.21.1-24.	1.1	36
10	Development of the Concept for Stem Cell-Based Developmental Neurotoxicity Evaluation. Toxicological Sciences, 2018, 165, 14-20.	3.1	28
11	A transcriptome comparison of time-matched developing human, mouse and rat neural progenitor cells reveals human uniqueness. Toxicology and Applied Pharmacology, 2018, 354, 40-55.	2.8	28
12	Epigallocatechin-3-gallate PEGylated poly(lactic-co-glycolic) acidÂnanoparticles mitigate striatal pathology and motor deficits in 3-nitropropionic acid intoxicated mice. Nanomedicine, 2021, 16, 19-35.	3.3	18
13	Developmental neurotoxicity of MDMA. A systematic literature review summarized in a putative adverse outcome pathway. NeuroToxicology, 2020, 78, 209-241.	3.0	17
14	Is Intake of Flavonoid-Based Food Supplements During Pregnancy Safe for the Developing Child? A Literature Review. Current Drug Targets, 2016, 18, 196-231.	2.1	16
15	Heavy metal and metalloids intake risk assessment in the diet of a rural population living near a gold mine in the Peruvian Andes (Cajamarca). Food and Chemical Toxicology, 2014, 71, 254-263.	3.6	14
16	Cardiovascular Effects of PCB 126 (3,3',4,4',5-Pentachlorobiphenyl) in Zebrafish Embryos and Impact of Co-Exposure to Redox Modulating Chemicals. International Journal of Molecular Sciences, 2019, 20, 1065.	4.1	12
17	Application of the Neurosphere Assay for DNT Hazard Assessment: Challenges and Limitations. Methods in Pharmacology and Toxicology, 2015, , 1.	0.2	11
18	Culture of human neurospheres in 3D scaffolds for developmental neurotoxicity testing. Toxicology in Vitro, 2018, 52, 106-115.	2.4	11

#	Article	IF	CITATIONS
19	Comparison of migration disturbance potency of epigallocatechin gallate (EGCG) synthetic analogs and EGCG PEGylated PLGA nanoparticles in rat neurospheres. Food and Chemical Toxicology, 2019, 123, 195-204.	3.6	10
20	Structural Brain Changes during the Neonatal Period in a Rabbit Model of Intrauterine Growth Restriction. Developmental Neuroscience, 2020, 42, 217-229.	2.0	10
21	Characterizing the multiple roles of FGFâ€2 in SOD1 ^{G93A} ALS mice in vivo and in vitro. Journal of Cellular Physiology, 2019, 234, 7395-7410.	4.1	9
22	Rabbit neurospheres as a novel in vitro tool for studying neurodevelopmental effects induced by intrauterine growth restriction. Stem Cells Translational Medicine, 2021, 10, 209-221.	3.3	9
23	Automatic counting and positioning of 5-bromo-2-deoxyuridine (BrdU) positive cells in cortical layers of rat brain slices. NeuroToxicology, 2014, 43, 127-133.	3.0	8
24	A Historical Perspective on the Use of Stem/Progenitor Cell-Based In Vitro Methods for Neurodevelopmental Toxicity Testing. Toxicological Sciences, 2018, 165, 10-13.	3.1	7
25	The Neurosphere Assay as an In Vitro Method for Developmental Neurotoxicity (DNT) Evaluation. Neuromethods, 2019, , 141-168.	0.3	7
26	From virtual screening hits targeting a cryptic pocket in BACE-1 to a nontoxic brain permeable multitarget anti-Alzheimer lead with disease-modifying and cognition-enhancing effects. European Journal of Medicinal Chemistry, 2021, 225, 113779.	5 . 5	7
27	Developmental exposure to MDMA (ecstasy) in zebrafish embryos reproduces the neurotoxicity adverse outcome â€`lower motor activity' described in humans. NeuroToxicology, 2022, 88, 116-123.	3.0	7
28	Evaluation of the effects of acetylcholinesterase inhibitors in the zebrafish touch-evoked response: quantitative vs. qualitative assessment. Environmental Sciences Europe, 2020, 32, .	5 . 5	7
29	Triclabendazole Sulfoxide Causes Stage-Dependent Embryolethality in Zebrafish and Mouse In Vitro. PLoS ONE, 2015, 10, e0121308.	2.5	5
30	Implementation of a functional endpoint to the zebrafish embryotoxicity test to evaluate craniofacial abnormalities. Toxicology in Vitro, 2019, 61, 104638.	2.4	3
31	Docosahexaenoic Acid and Melatonin Prevent Impaired Oligodendrogenesis Induced by Intrauterine Growth Restriction (IUGR). Biomedicines, 2022, 10, 1205.	3.2	3
32	Response to letter to the editor. Food and Chemical Toxicology, 2015, 80, 349.	3.6	0