Helin Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2249613/publications.pdf Version: 2024-02-01

HELIN YANC

#	Article	lF	CITATIONS
1	Deep Reinforcement Learning-Based Intelligent Reflecting Surface for Secure Wireless Communications. IEEE Transactions on Wireless Communications, 2021, 20, 375-388.	9.2	272
2	Artificial-Intelligence-Enabled Intelligent 6G Networks. IEEE Network, 2020, 34, 272-280.	6.9	271
3	On the Performance of MIMO-NOMA-Based Visible Light Communication Systems. IEEE Photonics Technology Letters, 2018, 30, 307-310.	2.5	211
4	Learning-Based Energy-Efficient Resource Management by Heterogeneous RF/VLC for Ultra-Reliable Low-Latency Industrial IoT Networks. IEEE Transactions on Industrial Informatics, 2020, 16, 5565-5576.	11.3	125
5	Intelligent Reflecting Surface Assisted Anti-Jamming Communications: A Fast Reinforcement Learning Approach. IEEE Transactions on Wireless Communications, 2021, 20, 1963-1974.	9.2	124
6	Intelligent Resource Management Based on Reinforcement Learning for Ultra-Reliable and Low-Latency IoV Communication Networks. IEEE Transactions on Vehicular Technology, 2019, 68, 4157-4169.	6.3	120
7	Privacy-Preserving Federated Learning for UAV-Enabled Networks: Learning-Based Joint Scheduling and Resource Management. IEEE Journal on Selected Areas in Communications, 2021, 39, 3144-3159.	14.0	102
8	Integration of Visible Light Communication and Positioning within 5G Networks for Internet of Things. IEEE Network, 2020, 34, 134-140.	6.9	101
9	Reduction of SINR Fluctuation in Indoor Multi-Cell VLC Systems Using Optimized Angle Diversity Receiver. Journal of Lightwave Technology, 2018, 36, 3603-3610.	4.6	72
10	Flexible-Rate SIC-Free NOMA for Downlink VLC Based on Constellation Partitioning Coding. IEEE Wireless Communications Letters, 2019, 8, 568-571.	5.0	56
11	QoS-Driven Optimized Design-Based Integrated Visible Light Communication and Positioning for Indoor IoT Networks. IEEE Internet of Things Journal, 2020, 7, 269-283.	8.7	51
12	Deep-Reinforcement-Learning-Based Energy-Efficient Resource Management for Social and Cognitive Internet of Things. IEEE Internet of Things Journal, 2020, 7, 5677-5689.	8.7	43
13	Deep Reinforcement Learning Based Massive Access Management for Ultra-Reliable Low-Latency Communications. IEEE Transactions on Wireless Communications, 2021, 20, 2977-2990.	9.2	40
14	Joint Precoder and Equalizer Design for Multi-User Multi-Cell MIMO VLC Systems. IEEE Transactions on Vehicular Technology, 2018, 67, 11354-11364.	6.3	38
15	An Actor-Critic Deep Reinforcement Learning Approach for Transmission Scheduling in Cognitive Internet of Things Systems. IEEE Systems Journal, 2020, 14, 51-60.	4.6	37
16	Experimental Demonstration of 3D Visible Light Positioning Using Received Signal Strength With Low-Complexity Trilateration Assisted by Deep Learning Technique. IEEE Access, 2019, 7, 93986-93997.	4.2	35
17	Energy-Efficient Joint Scheduling and Resource Management for UAV-Enabled Multicell Networks. IEEE Systems Journal, 2020, 14, 363-374.	4.6	33
18	User-Centric MIMO Techniques for Indoor Visible Light Communication Systems. IEEE Systems Journal, 2020, 14, 3202-3213.	4.6	29

Helin Yang

#	Article	IF	CITATIONS
19	Coordinated Resource Allocation-Based Integrated Visible Light Communication and Positioning Systems for Indoor IoT. IEEE Transactions on Wireless Communications, 2020, 19, 4671-4684.	9.2	28
20	Deep-Reinforcement-Learning-Based Spectrum Resource Management for Industrial Internet of Things. IEEE Internet of Things Journal, 2021, 8, 3476-3489.	8.7	28
21	Secure and private NOMA VLC using OFDM with two-level chaotic encryption. Optics Express, 2018, 26, 34031.	3.4	28
22	Demonstration of a Quasi-Gapless Integrated Visible Light Communication and Positioning System. IEEE Photonics Technology Letters, 2018, 30, 2001-2004.	2.5	24
23	OFDM-Based Generalized Optical MIMO. Journal of Lightwave Technology, 2021, 39, 6063-6075.	4.6	24
24	IRS-Aided Energy-Efficient Secure WBAN Transmission Based on Deep Reinforcement Learning. IEEE Transactions on Communications, 2022, 70, 4162-4174.	7.8	18
25	Cognitive Multi-Cell Visible Light Communication With Hybrid Underlay/Overlay Resource Allocation. IEEE Photonics Technology Letters, 2018, 30, 1135-1138.	2.5	17
26	Reinforcement Learning-Based Intelligent Resource Allocation for Integrated VLCP Systems. IEEE Wireless Communications Letters, 2019, 8, 1204-1207.	5.0	17
27	Space Division Multiple Access With Distributed User Grouping for Multi-User MIMO-VLC Systems. IEEE Open Journal of the Communications Society, 2020, 1, 943-956.	6.9	17
28	Deep Reinforcement Learning-Based Multidimensional Resource Management for Energy Harvesting Cognitive NOMA Communications. IEEE Transactions on Communications, 2022, 70, 3110-3125.	7.8	17
29	Robust Transceiver Design Based on Interference Alignment for Multi-User Multi-Cell MIMO Networks With Channel Uncertainty. IEEE Access, 2017, 5, 5121-5134.	4.2	12
30	LED Nonlinearity Estimation and Compensation in VLC Systems Using Probabilistic Bayesian Learning. Applied Sciences (Switzerland), 2019, 9, 2711.	2.5	12
31	An integrated indoor visible light communication and positioning system based on FBMC-SCM. , 2017, , .		11
32	Deep Reinforcement Learning Based Dynamic User Access and Decode Order Selection for Uplink NOMA System With Imperfect SIC. IEEE Wireless Communications Letters, 2021, 10, 710-714.	5.0	11
33	UAV-Assisted 5C/6C Networks: Joint Scheduling and Resource Allocation Based on Asynchronous Reinforcement Learning. , 2021, , .		10
34	Real-time indoor positioning system for a smart workshop using white LEDs and a phase-difference-of-arrival approach. Optical Engineering, 2019, 58, 1.	1.0	9
35	NOMA for MIMO Visible Light Communications: A Spatial Domain Perspective. , 2019, , .		8
36	Deep Reinforcement Learning Based Resource Allocation for Heterogeneous Networks. , 2021, , .		5

Helin Yang

#	Article	IF	CITATIONS
37	Performance analysis of angle diversity multi-element receiver in indoor multi-cell visible light communication systems. , 2017, , .		3
38	3D Beamforming Based on Deep Learning for Secure Communication in 5G and Beyond Wireless Networks. , 2021, , .		3
39	Resource Allocation for Multi-User Integrated Visible Light Communication and Positioning Systems. , 2019, , .		2
40	Demonstration of Inter-cell Interference Mitigation in Multi-cell VLC Systems Using Optimized Angle Diversity Receiver. , 2019, , .		2
41	QoS-Driven Optimized Design in A New Integrated Visible Light Communication and Positioning System. , 2020, , .		2
42	Fairness Enhancement for Opportunistic Interference Alignment Algorithm With Low Latency Communications. IEEE Systems Journal, 2020, 14, 5002-5013.	4.6	2
43	Deep Reinforcement Learning Based Big Data Resource Management for 5G/6G Communications. , 2021, ,		2