Jiaming Hao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2249375/publications.pdf

Version: 2024-02-01

331670 315739 4,068 48 21 38 citations h-index g-index papers 48 48 48 3506 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Long-wavelength infrared selective emitter for thermal infrared camouflage under a hot environment. Optics Express, 2022, 30, 24132.	3.4	10
2	Ultrathin, broadband, omnidirectional, and polarization-independent infrared absorber using all-dielectric refractory materials. Nanophotonics, 2021, 10, 1683-1690.	6.0	16
3	Nonlocal effective-medium theory for periodic multilayered metamaterials. Journal of Optics (United) Tj ETQq $1\ 1$	0.784314 2.2	4 rgBT /Overlo
4	Dark-Current-Blocking Mechanism in BIB Far-Infrared Detectors by Interfacial Barriers. IEEE Transactions on Electron Devices, 2021, 68, 2804-2809.	3.0	5
5	A Robust Equivalent Circuit Model for Magnetic Polaritons in SiC Grooves. Plasmonics, 2021, 16, 2147.	3.4	O
6	Highâ€Performance Roomâ€Temperature Extendedâ€Wavelength InAsâ€Based Middleâ€Wavelength Infrared Photodetector. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100281.	1.8	5
7	Dynamically reconfigurable subwavelength optical device for hydrogen sulfide gas sensing. Photonics Research, 2021, 9, 2060.	7.0	4
8	Remarkable photoluminescence enhancement of CsPbBr ₃ perovskite quantum dots assisted by metallic thin films. Nanophotonics, 2021, 10, 2257-2264.	6.0	10
9	Self-Assembly of Carbon Black/AAO Templates on Nanoporous Si for Broadband Infrared Absorption. ACS Applied Materials & Diterfaces, 2020, 12, 4081-4087.	8.0	25
10	Enhancement of Low-Temperature Gas-Sensing Performance Using Substoichiometric WO _{3–<i>x</i>} Modified with CuO. ACS Applied Materials & amp; Interfaces, 2020, 12, 41230-41238.	8.0	19
11	Flexible Transparent Heat Mirror for Thermal Applications. Nanomaterials, 2020, 10, 2479.	4.1	4
12	Highly polarization-sensitive far infrared detector based on an optical antenna integrated aligned carbon nanotube film. Nanoscale, 2020, 12, 11808-11817.	5.6	12
13	Gas Sensing Performance and Mechanism of CuO(p)-WO3(n) Composites to H2S Gas. Nanomaterials, 2020, 10, 1162.	4.1	13
14	Ultrasensitive ppb-level H2S gas sensor at room temperature based on WO3/rGO hybrids. Journal of Materials Science: Materials in Electronics, 2020, 31, 5008-5016.	2.2	18
15	Studies on Sensing Properties and Mechanism of CuO Nanoparticles to H2S Gas. Nanomaterials, 2020, 10, 774.	4.1	39
16	Wide gamut, angle-insensitive structural colors based on deep-subwavelength bilayer media. Nanophotonics, 2020, 9, 3385-3392.	6.0	16
17	Largeâ€Area, Broadband, Wideâ€Angle Plasmonic Metasurface Absorber for Midwavelength Infrared Atmospheric Transparency Window. Advanced Optical Materials, 2019, 7, 1900841.	7.3	44
18	One-step ion beam irradiation manufacture of 3D micro/nanopatterned structures in SiC with tunable work functions. Carbon, 2019, 148, 387-393.	10.3	4

#	Article	IF	CITATIONS
19	Large-area, lithography-free, narrow-band and highly directional thermal emitter. Nanoscale, 2019, 11, 19742-19750.	5.6	39
20	Electromagnetic metasurfaces: physics and applications. Advances in Optics and Photonics, 2019, 11, 380.	25.5	324
21	Broadband transmissive quarter-wave plate using double-layer metallic structures. , 2018, , .		0
22	Spatial and Frequency Selective Plasmonic Metasurface for Long Wavelength Infrared Spectral Region. Advanced Optical Materials, 2018, 6, 1800337.	7.3	23
23	Tailor the functionalities of metasurfaces based on a complete phase diagram. , 2016, , .		2
24	Terahertz master-oscillator power-amplifier quantum cascade lasers. Applied Physics Letters, 2016, 109,	3.3	19
25	Manipulating the wavefront of light by plasmonic metasurfaces operating in high order modes. Optics Express, 2016, 24, 8788.	3.4	44
26	Shaping the flow of light based on abrupt phase discontinuities operation in high order modes. , 2016, , .		0
27	Tailor the Functionalities of Metasurfaces Based on a Complete Phase Diagram. Physical Review Letters, 2015, 115, 235503.	7.8	230
28	Plasmonic metasurfaces: From perfect absorption to phase modulation. , 2015, , .		0
29	Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array. Nanoscale, 2014, 6, 12303-12309.	5.6	43
30	Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light. Nanoscale, 2013, 5, 3373.	5 . 6	36
31	Tailor the surface-wave properties of a plasmonic metal by a metamaterial capping. Optics Express, 2013, 21, 18178.	3.4	25
32	Design of an ultrathin broadband transparent and high-conductive screen using plasmonic nanostructures. Optics Letters, 2012, 37, 4955.	3.3	38
33	Reflectionless ultrathin microwave waveplate based on metamaterials. , 2012, , .		0
34	Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared. Journal of Applied Physics, 2011, 109, .	2.5	71
35	Nearly total absorption of light and heat generation by plasmonic metamaterials. Physical Review B, 2011, 83, .	3.2	440
36	Photothermal reshaping of gold nanoparticles in a plasmonic absorber. Optics Express, 2011, 19, 14726.	3.4	108

#	Article	IF	CITATIONS
37	A transparent metamaterial to manipulate electromagnetic wave polarizations. Optics Letters, 2011, 36, 927.	3.3	126
38	Photothermal phenomena in plasmonics and metamaterials., 2011,,.		О
39	Tight-binding analysis of coupling effects in metamaterials. Journal of Applied Physics, 2011, 109, 023103.	2.5	11
40	High performance optical absorber based on a plasmonic metamaterial. Applied Physics Letters, 2010, 96, .	3.3	1,071
41	Directional emissions achieved with anomalous reflection phases of metamaterials. Journal of Applied Physics, 2010, 107, 023109.	2.5	0
42	Super-reflection and cloaking based on zero index metamaterial. Applied Physics Letters, 2010, 96, .	3.3	226
43	Optical metamaterial for polarization control. Physical Review A, 2009, 80, .	2.5	141
44	Electromagnetic wave scatterings by anisotropic metamaterials: Generalized <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>4</mml:mn>4×<mml:mn>4<td>-oॐ^{;2}<td>ıl: <mark>82</mark>th>trans</td></td></mml:mn></mml:math>	-oॐ ^{;2} <td>ıl: <mark>82</mark>th>trans</td>	ıl: <mark>82</mark> th>trans
45	Extraordinary transmission in metamaterial-loaded waveguides: effective-medium models, microwave experiments and tight binding studies. , 2008, , .		О
46	Resonance-induced transmissions through waveguides below cut-off frequencies: An effective-medium model for waveguide. , 2007, , .		0
47	Manipulating Electromagnetic Wave Polarizations by Anisotropic Metamaterials. Physical Review Letters, 2007, 99, 063908.	7.8	679
48	All-dimensional subwavelength cavities made with metamaterials. Applied Physics Letters, 2006, 89, 104101.	3.3	36