
Naoto Fujii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2249162/publications.pdf Version: 2024-02-01

Νλοτο Ειμμ

#	Article	IF	CITATIONS
1	New approach to measure cutaneous microvascular function: an improved test of NO-mediated vasodilation by thermal hyperemia. Journal of Applied Physiology, 2014, 117, 277-283.	2.5	84
2	Evidence for cyclooxygenaseâ€dependent sweating in young males during intermittent exercise in the heat. Journal of Physiology, 2014, 592, 5327-5339.	2.9	56
3	Comparison of hyperthermic hyperpnea elicited during rest and submaximal, moderate-intensity exercise. Journal of Applied Physiology, 2008, 104, 998-1005.	2.5	55
4	Short-term exercise-heat acclimation enhances skin vasodilation but not hyperthermic hyperpnea in humans exercising in a hot environment. European Journal of Applied Physiology, 2012, 112, 295-307.	2.5	51
5	Diminished nitric oxideâ€dependent sweating in older males during intermittent exercise in the heat. Experimental Physiology, 2014, 99, 921-932.	2.0	48
6	iNOS-dependent sweating and eNOS-dependent cutaneous vasodilation are evident in younger adults, but are diminished in older adults exercising in the heat. Journal of Applied Physiology, 2016, 120, 318-327.	2.5	45
7	No independent, but an interactive, role of calcium-activated potassium channels in human cutaneous active vasodilation. Journal of Applied Physiology, 2013, 115, 1290-1296.	2.5	40
8	Exploring the mechanisms underpinning sweating: the development of a specialized ventilated capsule for use with intradermal microdialysis. Physiological Reports, 2016, 4, e12738.	1.7	40
9	Heat exhaustion. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 157, 505-529.	1.8	39
10	Comparison of hyperthermic hyperventilation during passive heating and prolonged light and moderate exercise in the heat. Journal of Applied Physiology, 2012, 113, 1388-1397.	2.5	38
11	Cyclooxygenase inhibition does not alter methacholine-induced sweating. Journal of Applied Physiology, 2014, 117, 1055-1062.	2.5	38
12	Effect of CO ₂ on the ventilatory sensitivity to rising body temperature during exercise. Journal of Applied Physiology, 2011, 110, 1334-1341.	2.5	35
13	Impaired acetylcholine-induced cutaneous vasodilation in young smokers: roles of nitric oxide and prostanoids. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H667-H673.	3.2	35
14	Age-related differences in postsynaptic increases in sweating and skin blood flow postexercise. Physiological Reports, 2014, 2, e12078.	1.7	33
15	Do nitric oxide synthase and cyclooxygenase contribute to the heat loss responses in older males exercising in the heat?. Journal of Physiology, 2015, 593, 3169-3180.	2.9	29
16	Exercise Heat Stress in Patients With and Without Type 2 Diabetes. JAMA - Journal of the American Medical Association, 2019, 322, 1409.	7.4	29
17	Intradermal administration of ATP augments methacholine-induced cutaneous vasodilation but not sweating in young males and females. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R912-R919.	1.8	28
18	Endothelial-derived hyperpolarization contributes to acetylcholine-mediated vasodilation in human skin in a dose-dependent manner. Journal of Applied Physiology, 2015, 119, 1015-1022.	2.5	28

#	Article	IF	CITATIONS
19	Tempol improves cutaneous thermal hyperemia through increasing nitric oxide bioavailability in young smokers. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1507-H1511.	3.2	27
20	Cutaneous vascular and sweating responses to intradermal administration of ATP: a role for nitric oxide synthase and cyclooxygenase?. Journal of Physiology, 2015, 593, 2515-2525.	2.9	27
21	K ⁺ channel mechanisms underlying cholinergic cutaneous vasodilation and sweating in young humans: roles of K _{Ca} , K _{ATP} , and K _V channels?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R600-R606.	1.8	26
22	Mechanisms underlying the postexercise baroreceptor-mediated suppression of heat loss. Physiological Reports, 2014, 2, e12168.	1.7	25
23	Effect of hypohydration on hyperthermic hyperpnea and cutaneous vasodilation during exercise in men. Journal of Applied Physiology, 2008, 105, 1509-1518.	2.5	24
24	Effect of initial core temperature on hyperthermic hyperventilation during prolonged submaximal exercise in the heat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R94-R102.	1.8	22
25	Local infusion of ascorbate augments NOâ€dependent cutaneous vasodilatation during intense exercise in the heat. Journal of Physiology, 2015, 593, 4055-4065.	2.9	22
26	Voluntary suppression of hyperthermia-induced hyperventilation mitigates the reduction in cerebral blood flow velocity during exercise in the heat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R669-R679.	1.8	20
27	The interactive contributions of Na ⁺ /K ⁺ â€ATPase and nitric oxide synthase to sweating and cutaneous vasodilatation during exercise in the heat. Journal of Physiology, 2016, 594, 3453-3462.	2.9	20
28	Heat shock protein 90 contributes to cutaneous vasodilation through activating nitric oxide synthase in young male adults exercising in the heat. Journal of Applied Physiology, 2017, 123, 844-850.	2.5	20
29	Evidence for TRPV4 channel induced skin vasodilatation through NOS, COX, and KCa channel mechanisms with no effect on sweat rate in humans. European Journal of Pharmacology, 2019, 858, 172462.	3.5	19
30	Dietary Supplementation for Attenuating Exercise-Induced Muscle Damage and Delayed-Onset Muscle Soreness in Humans. Nutrients, 2022, 14, 70.	4.1	19
31	Effect of short-term exercise-heat acclimation on ventilatory and cerebral blood flow responses to passive heating at rest in humans. Journal of Applied Physiology, 2015, 119, 435-444.	2.5	17
32	No effect of ascorbate on cutaneous vasodilation and sweating in older men and those with type 2 diabetes exercising in the heat. Physiological Reports, 2017, 5, e13238.	1.7	17
33	Adenosine receptor inhibition attenuates the suppression of postexercise cutaneous blood flow. Journal of Physiology, 2014, 592, 2667-2678.	2.9	16
34	Individual variations in nitric oxide synthaseâ€dependent sweating in young and older males during exercise in the heat: role of aerobic power. Physiological Reports, 2017, 5, e13208.	1.7	16
35	Evidence for Î ² -adrenergic modulation of sweating during incremental exercise in habitually trained males. Journal of Applied Physiology, 2017, 123, 182-189.	2.5	16
36	Mechanisms of nicotine-induced cutaneous vasodilation and sweating in young adults: roles for K _{Ca} , K _{ATP} , and K _V channels, nitric oxide, and prostanoids. Applied Physiology, Nutrition and Metabolism, 2017, 42, 470-478.	1.9	15

#	Article	IF	CITATIONS
37	Effect of voluntary hypocapnic hyperventilation on cutaneous circulation in resting heated humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R975-R983.	1.8	14
38	Administration of prostacyclin modulates cutaneous blood flow but not sweating in young and older males: roles for nitric oxide and calciumâ€activated potassium channels. Journal of Physiology, 2016, 594, 6419-6429.	2.9	14
39	The roles of the Na ⁺ /K ⁺ -ATPase, NKCC, and K ⁺ channels in regulating local sweating and cutaneous blood flow during exercise in humans inÂvivo. Physiological Reports, 2016, 4, e13024.	1.7	14
40	Nicotinic receptor activation augments muscarinic receptorâ€mediated eccrine sweating but not cutaneous vasodilatation in young males. Experimental Physiology, 2017, 102, 245-254.	2.0	14
41	Nitric oxide synthase and cyclooxygenase modulate βâ€adrenergic cutaneous vasodilatation and sweating in young men. Journal of Physiology, 2017, 595, 1173-1184.	2.9	14
42	Type 1 diabetes modulates cyclooxygenase- and nitric oxide-dependent mechanisms governing sweating but not cutaneous vasodilation during exercise in the heat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R1076-R1084.	1.8	13
43	Cutaneous blood flow during intradermal NO administration in young and older adults: roles for calcium-activated potassium channels and cyclooxygenase?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R1081-R1087.	1.8	12
44	The roles of K _{Ca} , K _{ATP} , and K _V channels in regulating cutaneous vasodilation and sweating during exercise in the heat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R821-R827.	1.8	12
45	Menstrual phase and ambient temperature do not influence iron regulation in the acute exercise period. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R780-R790.	1.8	12
46	Can intradermal administration of angiotensin II influence human heat loss responses during whole body heat stress?. Journal of Applied Physiology, 2015, 118, 1145-1153.	2.5	11
47	Cutaneous adrenergic nerve blockade attenuates sweating during incremental exercise in habitually trained men. Journal of Applied Physiology, 2018, 125, 1041-1050.	2.5	11
48	Effects of isomaltulose ingestion on postexercise hydration state and heat loss responses in young men. Experimental Physiology, 2019, 104, 1494-1504.	2.0	11
49	TRPV4 channel blockade does not modulate skin vasodilation and sweating during hyperthermia or cutaneous postocclusive reactive and thermal hyperemia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R563-R573.	1.8	11
50	Effect of voluntary hypocapnic hyperventilation on the metabolic response during Wingate anaerobic test. European Journal of Applied Physiology, 2015, 115, 1967-1974.	2.5	10
51	Cutaneous vascular and sweating responses to intradermal administration of prostaglandin E ₁ and E ₂ in young and older adults: a role for nitric oxide?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R1064-R1072.	1.8	10
52	Fluid replacement modulates oxidative stress- but not nitric oxide-mediated cutaneous vasodilation and sweating during prolonged exercise in the heat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 313, R730-R739.	1.8	10
53	Cyclooxygenase-1 and -2 modulate sweating but not cutaneous vasodilation during exercise in the heat in young men. Physiological Reports, 2018, 6, e13844.	1.7	10
54	Aging attenuates adenosine triphosphateâ€induced, but not muscarinic and nicotinic, cutaneous vasodilation in men. Microcirculation, 2018, 25, e12462.	1.8	10

#	Article	IF	CITATIONS
55	NO-mediated activation of K _{ATP} channels contributes to cutaneous thermal hyperemia in young adults. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R390-R398.	1.8	10
56	Regulation of autophagy following ex vivo heating in peripheral blood mononuclear cells from young adults. Journal of Thermal Biology, 2020, 91, 102643.	2.5	10
57	Endothelinâ€1 modulates methacholineâ€induced cutaneous vasodilatation but not sweating in young human skin. Journal of Physiology, 2016, 594, 3439-3452.	2.9	9
58	Type 2 diabetes specifically attenuates purinergic skin vasodilatation without affecting muscarinic and nicotinic skin vasodilatation and sweating. Experimental Physiology, 2018, 103, 212-221.	2.0	9
59	Local arginase inhibition does not modulate cutaneous vasodilation or sweating in young and older men during exercise. Journal of Applied Physiology, 2019, 126, 1129-1137.	2.5	9
60	Carotid chemoreceptors have a limited role in mediating the hyperthermia-induced hyperventilation in exercising humans. Journal of Applied Physiology, 2019, 126, 305-313.	2.5	8
61	Activation of proteaseâ€activated receptor 2 mediates cutaneous vasodilatation but not sweating: roles of nitric oxide synthase and cycloâ€oxygenase. Experimental Physiology, 2017, 102, 265-272.	2.0	7
62	Voltage-gated potassium channels and NOS contribute to a sustained cutaneous vasodilation elicited by local heating in an interactive manner in young adults. Microvascular Research, 2018, 117, 22-27.	2.5	7
63	Separate and combined effects of K _{Ca} and K _{ATP} channel blockade with NOS inhibition on cutaneous vasodilation and sweating in older men during heat stress. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 317, R113-R120.	1.8	7
64	Respiratory mechanics and cerebral blood flow during heat-induced hyperventilation and its voluntary suppression in passively heated humans. Physiological Reports, 2019, 7, e13967.	1.7	7
65	The relative contribution of α―and βâ€adrenergic sweating during heat exposure and the influence of sex and training status. Experimental Dermatology, 2020, 29, 1216-1224.	2.9	7
66	Hypervolemia induced by fluid ingestion at rest: effect of sodium concentration. European Journal of Applied Physiology, 2014, 114, 2139-2145.	2.5	6
67	Cardiovascular responses to forearm muscle metaboreflex activation during hypercapnia in humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R43-R50.	1.8	6
68	The mechanisms underlying the muscle metaboreflex modulation of sweating and cutaneous blood flow in passively heated humans. Physiological Reports, 2017, 5, e13123.	1.7	6
69	Effect of voluntary hypocapnic hyperventilation or moderate hypoxia on metabolic and heart rate responses during high-intensity intermittent exercise. European Journal of Applied Physiology, 2017, 117, 1573-1583.	2.5	6
70	Prostacyclin does not affect sweating but induces skin vasodilatation to a greater extent in older versus younger women: roles of NO and K Ca channels. Experimental Physiology, 2017, 102, 578-586.	2.0	6
71	Oxidative stress does not influence local sweat rate during highâ€intensity exercise. Experimental Physiology, 2018, 103, 172-178.	2.0	6
72	Nicotinic receptors modulate skin perfusion during normothermia, and have a limited role in skin vasodilatation and sweating during hyperthermia. Experimental Physiology, 2019, 104, 1808-1818.	2.0	6

#	Article	IF	CITATIONS
73	Sex-differences in cholinergic, nicotinic, and Î ² -adrenergic cutaneous vasodilation: Roles of nitric oxide synthase, cyclooxygenase, and K+ channels. Microvascular Research, 2020, 131, 104030.	2.5	6
74	Does α1-adrenergic receptor blockade modulate sweating during incremental exercise in young endurance-trained men?. European Journal of Applied Physiology, 2020, 120, 1123-1129.	2.5	6
75	Caffeine Exacerbates Hyperventilation and Reductions in Cerebral Blood Flow in Physically Fit Men Exercising in the Heat. Medicine and Science in Sports and Exercise, 2021, 53, 845-852.	0.4	6
76	Hypercapnia elicits differential vascular and blood flow responses in the cerebral circulation and active skeletal muscles in exercising humans. Physiological Reports, 2022, 10, e15274.	1.7	6
77	Do nitric oxide synthase and cyclooxygenase contribute to sweating response during passive heating in endurance-trained athletes?. Physiological Reports, 2017, 5, e13403.	1.7	5
78	Voluntary apnea during dynamic exercise activates the muscle metaboreflex in humans. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H434-H442.	3.2	5
79	Ageing augments nicotinic and adenosine triphosphateâ€induced, but not muscarinic, cutaneous vasodilatation in women. Experimental Physiology, 2019, 104, 1801-1807.	2.0	5
80	Ageing attenuates muscarinicâ€mediated sweating differently in men and women with no effect on nicotinicâ€mediated sweating. Experimental Dermatology, 2019, 28, 968-971.	2.9	5
81	Intradermal administration of atrial natriuretic peptide has no effect on sweating and cutaneous vasodilator responses in young male adults*. Temperature, 2017, 4, 406-413.	3.0	4
82	Effects of workâ€matched supramaximal intermittent vs. submaximal constantâ€workload warmâ€up on allâ€out effort power output at the end of 2Âminutes of maximal cycling. European Journal of Sport Science, 2019, 19, 336-344.	2.7	4
83	Tetraethylammonium, glibenclamide, and 4â€aminopyridine modulate postâ€occlusive reactive hyperemia in nonâ€glabrous human skin with no roles of NOS and COX. Microcirculation, 2020, 27, e12586.	1.8	4
84	KCa and KV channels modulate the venoarteriolar reflex in non-glabrous human skin with no roles of KATP channels, NOS, and COX. European Journal of Pharmacology, 2020, 866, 172828.	3.5	4
85	Effects of L-type voltage-gated Ca2+ channel blockade on cholinergic and thermal sweating in habitually trained and untrained men. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 319, R584-R591.	1.8	4
86	Voluntary hypocapnic hyperventilation lasting 5â€min and 20â€min similarly reduce aerobic metabolism without affecting power outputs during Wingate anaerobic test. European Journal of Sport Science, 2021, 21, 1148-1155.	2.7	4
87	Comparisons of isomaltulose, sucrose, and mixture of glucose and fructose ingestions on postexercise hydration state in young men. European Journal of Nutrition, 2021, 60, 4519-4529.	3.9	4
88	Measurement error of self-paced exercise performance in athletic women is not affected by ovulatory status or ambient environment. Journal of Applied Physiology, 2021, 131, 1496-1504.	2.5	4
89	Superoxide and NADPH oxidase do not modulate skin blood flow in older exercising adults with and without type 2 diabetes. Microvascular Research, 2019, 125, 103886.	2.5	3
90	Does the iontophoretic application of bretylium tosylate modulate sweating during exercise in the heat in habitually trained and untrained men?. Experimental Physiology, 2020, 105, 1692-1699.	2.0	3

#	Article	IF	CITATIONS
91	The nitric oxide dependence of cutaneous microvascular function to independent and combined hypoxic cold exposure. Journal of Applied Physiology, 2020, 129, 947-956.	2.5	3
92	Regional contributions of nitric oxide synthase to cholinergic cutaneous vasodilatation and sweating in young men. Experimental Physiology, 2020, 105, 236-243.	2.0	3
93	Urinary N-terminal fragment of titin: A surrogate marker of serum creatine kinase activity after exercise-induced severe muscle damage. Journal of Sports Sciences, 2021, 39, 1437-1444.	2.0	3
94	Effects of Isomaltulose Ingestion on Thermoregulatory Responses during Exercise in a Hot Environment. International Journal of Environmental Research and Public Health, 2021, 18, 5760.	2.6	3
95	Regional variation in nitric oxideâ€dependent cutaneous vasodilatation during local heating in young adults. Experimental Physiology, 2021, 106, 1671-1678.	2.0	3
96	Type 2 diabetes impairs vascular responsiveness to nitric oxide, but not the venoarteriolar reflex or postâ€occlusive reactive hyperaemia in forearm skin. Experimental Dermatology, 2021, 30, 1807-1813.	2.9	3
97	Regional cutaneous vasodilator responses to rapid and gradual local heating in young adults. Journal of Thermal Biology, 2021, 99, 102978.	2.5	3
98	Heat shock protein 90 modulates cutaneous vasodilation during an exerciseâ€heat stress, but not during passive wholeâ€body heating in young women. Physiological Reports, 2020, 8, e14552.	1.7	3
99	Effect of P2 receptor blockade on cutaneous vasodilation during rest and exercise in the heat in young men. Applied Physiology, Nutrition and Metabolism, 2018, 43, 312-315.	1.9	2
100	Contribution of nitric oxide synthase to cutaneous vasodilatation and sweating in men of blackâ€African and Caucasian descent during exercise in the heat. Experimental Physiology, 2019, 104, 1762-1768.	2.0	2
101	Heat shock protein 90 does not contribute to cutaneous vasodilatation in older adults during heat stress. Microcirculation, 2019, 26, e12541.	1.8	2
102	Ageing augments βâ€adrenergic cutaneous vasodilatation differently in men and women, with no effect on βâ€adrenergic sweating. Experimental Physiology, 2020, 105, 1720-1729.	2.0	2
103	Regional influence of nitric oxide on cutaneous vasodilatation and sweating during exerciseâ€heat stress in young men. Experimental Physiology, 2020, 105, 773-782.	2.0	2
104	Independent and combined impact of hypoxia and acute inorganic nitrate ingestion on thermoregulatory responses to the cold. European Journal of Applied Physiology, 2021, 121, 1207-1218.	2.5	2
105	Effects of 6-(Methylsulfinyl)hexyl Isothiocyanate Ingestion on Muscle Damage after Eccentric Exercise in Healthy Males: A Pilot Placebo-Controlled Double-Blind Crossover Study. Journal of Dietary Supplements, 2021, , 1-15.	2.6	2
106	Na ⁺ -K ⁺ -ATPase plays a major role in mediating cutaneous thermal hyperemia achieved by local skin heating to 39°C. Journal of Applied Physiology, 2021, 131, 1408-1416.	2.5	2
107	Carbohydrate hastens hypervolemia achieved through ingestion of aqueous sodium solution in resting euhydrated humans. European Journal of Applied Physiology, 2021, 121, 3527-3537.	2.5	2
108	Effects of shortâ€ŧerm heat acclimation on wholeâ€body heat exchange and local nitric oxide synthase― and cyclooxygenaseâ€dependent heat loss responses in exercising older men. Experimental Physiology, 2021, 106, 450-462.	2.0	2

#	Article	IF	CITATIONS
109	TRPA1 Channel Activation With Cinnamaldehyde Induces Cutaneous Vasodilation Through NOS, but Not COX and KCa Channel, Mechanisms in Humans. Journal of Cardiovascular Pharmacology, 2022, 79, 375-382.	1.9	2
110	Intradermal administration of endothelin-1 attenuates endothelium-dependent and -independent cutaneous vasodilation via Rho kinase in young adults. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R23-R30.	1.8	1
111	The effect of exogenous activation of protease-activated receptor 2 on cutaneous vasodilatation and sweating in young males during rest and exercise in the heat. Temperature, 2018, 5, 257-266.	3.0	1
112	Exogenous Activation of Protease-Activated Receptor 2 Attenuates Cutaneous Vasodilatation and Sweating in Older Men Exercising in the Heat. Skin Pharmacology and Physiology, 2019, 32, 235-243.	2.5	1
113	Sodium bicarbonate ingestion mitigates the heat-induced hyperventilation and reduction in cerebral blood velocity during exercise in the heat. Journal of Applied Physiology, 2021, 131, 1617-1628.	2.5	1
114	Effects of High-Intensity Exercise Repetition Number During Warm-up on Physiological Responses, Perceptions, Readiness, and Performance. Research Quarterly for Exercise and Sport, 2023, 94, 163-172.	1.4	1
115	Influence of uncomplicated, controlled hypertension on local heat-induced vasodilation in nonglabrous skin across the body. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2022, 322, R326-R335.	1.8	1
116	Effects of tetraethylammoniumâ€sensitive K ⁺ channel blockade on cholinergic and thermal sweating in enduranceâ€trained and untrained men. Experimental Physiology, 2022, 107, 441-449.	2.0	1
117	Does aging alter skin vascular function in humans when spatial variation is considered?. Microcirculation, 2022, 29, e12743.	1.8	1
118	The effect of acute intradermal administration of ascorbate on heat loss responses in older adults with uncomplicated controlled hypertension. Experimental Physiology, 2022, 107, 834-843.	2.0	1
119	Do E2 and P4 contribute to the explained variance in core temperature response for trained women during exertional heat stress when metabolic rates are very high?. European Journal of Applied Physiology, 2022, 122, 2201-2212.	2.5	1
120	The effect of endothelin A and B receptor blockade on cutaneous vascular and sweating responses in young men during and following exercise in the heat. Journal of Applied Physiology, 2016, 121, 1263-1271.	2.5	0
121	Intradermal Administration of Atrial Natriuretic Peptide Attenuates Cutaneous Vasodilation but Not Sweating in Young Men during Exercise in the Heat. Skin Pharmacology and Physiology, 2020, 33, 86-93.	2.5	0
122	KCa channels are major contributors to ATP-induced cutaneous vasodilation in healthy older adults. Microvascular Research, 2021, 133, 104096.	2.5	0
123	A complex interplay between NO, EDHFs, and KIR channels in cutaneous active vasodilation. FASEB Journal, 2013, 27, 1133.16.	0.5	0
124	EDHFs contribute to AChâ€mediated vasodilation in human skin in a doseâ€dependent manner. FASEB Journal, 2013, 27, 687.9.	0.5	0
125	A novel look at KIR channels and potassium in human skin. FASEB Journal, 2013, 27, .	0.5	0
126	TMEM16A blockers T16Ainhâ€A01 and benzbromarone do not modulate the regulation of sweating and cutaneous vasodilatation in humans in vivo. Experimental Physiology, 0, , .	2.0	0