
Judith GonzÃ;lez-Arias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/224915/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrothermal carbonization of biomass and waste: A review. Environmental Chemistry Letters, 2022, 20, 211-221.	8.3	61
2	Hydrothermal Carbonization of Olive Tree Pruning as a Sustainable Way for Improving Biomass Energy Potential: Effect of Reaction Parameters on Fuel Properties. Processes, 2020, 8, 1201.	1.3	42
3	Enhancing Anaerobic Digestion: The Effect of Carbon Conductive Materials. Journal of Carbon Research, 2018, 4, 59.	1.4	41
4	Insights into the product quality and energy requirements for solid biofuel production: A comparison of hydrothermal carbonization, pyrolysis and torrefaction of olive tree pruning. Energy, 2022, 238, 122022.	4.5	33
5	Integrating anaerobic digestion and pyrolysis for treating digestates derived from sewage sludge and fat wastes. Environmental Science and Pollution Research, 2020, 27, 32603-32614.	2.7	29
6	Optimizing hydrothermal carbonization of olive tree pruning: A techno-economic analysis based on experimental results. Science of the Total Environment, 2021, 784, 147169.	3.9	29
7	Biochar and Energy Production: Valorizing Swine Manure through Coupling Co-Digestion and Pyrolysis. Journal of Carbon Research, 2020, 6, 43.	1.4	25
8	Valorization of biomass-derived CO2 residues with Cu-MnOx catalysts for RWGS reaction. Renewable Energy, 2022, 182, 443-451.	4.3	22
9	Promoting bioeconomy routes: From food waste to green biomethane. A profitability analysis based on a real case study in eastern Germany. Journal of Environmental Management, 2021, 300, 113788.	3.8	21
10	Unprofitability of small biogas plants without subsidies in the Brandenburg region. Environmental Chemistry Letters, 2021, 19, 1823-1829.	8.3	20
11	Biogas upgrading to biomethane as a local source of renewable energy to power light marine transport: Profitability analysis for the county of Cornwall. Waste Management, 2022, 137, 81-88.	3.7	16
12	Management of off-specification compost by using co-hydrothermal carbonization with olive tree pruning. Assessing energy potential of hydrochar. Waste Management, 2021, 124, 224-234.	3.7	15
13	Integrating Anaerobic Digestion of Pig Slurry and Thermal Valorisation of Biomass. Waste and Biomass Valorization, 2020, 11, 6125-6137.	1.8	14
14	A techno-economic study of HTC processes coupled with power facilities and oxy-combustion systems. Energy, 2021, 219, 119651.	4.5	14
15	Performance evaluation of a small-scale digester for achieving decentralised management of waste. Waste Management, 2020, 118, 99-109.	3.7	12
16	Syngas production using CO2-rich residues: From ideal to real operating conditions. Journal of CO2 Utilization, 2021, 52, 101661.	3.3	10
17	Assessment of electrooxidation as pre- and post-treatments for improving anaerobic digestion and stabilisation of waste activated sludge. Journal of Environmental Management, 2021, 288, 112365.	3.8	9
18	Enhancing biomethane production by biochar addition during anaerobic digestion is economically unprofitable. Environmental Chemistry Letters, 2022, 20, 991-997.	8.3	9

JUDITH GONZÃILEZ-ARIAS

#	Article	IF	CITATIONS
19	Evaluation of Joint Management of Pine Wood Waste and Residual Microalgae for Agricultural Application. Sustainability, 2021, 13, 53.	1.6	8
20	Profitability analysis of thermochemical processes for biomass-waste valorization: a comparison of dry vs wet treatments. Science of the Total Environment, 2022, 811, 152240.	3.9	8
21	Economic approach for CO2 valorization from hydrothermal carbonization gaseous streams via reverse water-gas shift reaction. Fuel, 2022, 313, 123055.	3.4	6
22	Pyrolysed almond shells used as electrodes in microbial electrolysis cell. Biomass Conversion and Biorefinery, 2022, 12, 313-321.	2.9	5
23	Description of a Decentralized Small Scale Digester for Treating Organic Wastes. Environments - MDPI, 2020, 7, 78.	1.5	3
24	Bioconversion and Biorefineries: Recent Advances and Applications. Biofuel and Biorefinery Technologies, 2020, , 185-227.	0.1	0