
Tomonobu Nakayama

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2249001/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantized conductance atomic switch. Nature, 2005, 433, 47-50.	13.7	1,115
2	Nanometer-scale switches using copper sulfide. Applied Physics Letters, 2003, 82, 3032-3034.	1.5	492
3	Boron Nitride Nanosheet Coatings with Controllable Water Repellency. ACS Nano, 2011, 5, 6507-6515.	7.3	275
4	Learning Abilities Achieved by a Single Solid‣tate Atomic Switch. Advanced Materials, 2010, 22, 1831-1834.	11.1	274
5	A nonvolatile programmable solid-electrolyte nanometer switch. IEEE Journal of Solid-State Circuits, 2005, 40, 168-176. Macroscopic Superconducting Current through a Silicon Surface Reconstruction with Indium	3.5	198
6	Adatoms: <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" > <mml:mi> Si </mml:mi> <mml:mo stretchy="false" > (<mml:mn> 111 </mml:mn> <mml:mo stretchy="false">) </mml:mo> <mml:mtext mathvariant="normal" > â~ <mml:mo< td=""><td></td><td></td></mml:mo<></mml:mtext </mml:mo </mml:math>		

#	Article	IF	CITATIONS
19	Two Dimensional Array of Piezoresistive Nanomechanical Membrane-Type Surface Stress Sensor (MSS) with Improved Sensitivity. Sensors, 2012, 12, 15873-15887.	2.1	66
20	Epitaxially grown WOx nanorod probes for sub-100nm multiple-scanning-probe measurement. Applied Physics Letters, 2006, 88, 254101.	1.5	63
21	Influence of surfactant coverage on epitaxial growth of Ge on Si(001). Physical Review B, 1996, 54, 8600-8604.	1.1	62
22	Molecular Scale Control of Unbound and Bound C ₆₀ for Topochemical Ultradense Data Storage in an Ultrathin C ₆₀ Film. Advanced Materials, 2010, 22, 1622-1625.	11.1	61
23	Ionic/electronic mixed conductor tip of a scanning tunneling microscope as a metal atom source for nanostructuring. Applied Physics Letters, 2002, 80, 4009-4011.	1.5	56
24	Development and Application of Multipleâ€Probe Scanning Probe Microscopes. Advanced Materials, 2012, 24, 1675-1692.	11.1	56
25	Surfactantâ€free Fabrication of Fullerene C ₆₀ Nanotubules Under Shear. Angewandte Chemie - International Edition, 2017, 56, 8398-8401.	7.2	55
26	Current-Driven Supramolecular Motor with In Situ Surface Chiral Directionality Switching. Nano Letters, 2015, 15, 4793-4798.	4.5	54
27	Weakly bound and strainedC60monolayer on theSi(111)3×3R30°â^'Agsubstrate surface. Physical Review B, 1999, 59, 12627-12631.	1.1	48
28	Biatomic Layer-High Steps on Si(001)2×1 Surface. Japanese Journal of Applied Physics, 1987, 26, L280-L282.	0.8	47
29	In situ Surface-Enhanced Infrared Absorption Spectroscopy for the Analysis of the Adsorption and Desorption Process of Au Nanoparticles on the SiO2/Si Surface. Langmuir, 2007, 23, 6119-6125.	1.6	47
30	Enhanced omniphobicity of mullite hollow fiber membrane with organosilane-functionalized TiO2 micro-flowers and nanorods layer deposition for desalination using direct contact membrane distillation. Journal of Membrane Science, 2020, 607, 118137.	4.1	41
31	Reversible adsorption of Au nanoparticles on SiO2/Si: An in situ ATR-IR study. Surface Science, 2006, 600, L71-L75.	0.8	39
32	Resistive phase transition of the superconducting Si(111)-(7 × 3)-In surface. Nanoscale Research Letters, 2013, 8, 167.	3.1	39
33	Metallic versus Semiconducting SWCNT Chemiresistors: A Case for Separated SWCNTs Wrapped by a Metallosupramolecular Polymer. ACS Applied Materials & Interfaces, 2017, 9, 38062-38067.	4.0	39
34	PHOTOINDUCED PRODUCTS IN A C60 MONOLAYER ON \${m Si}(111) (sqrt{3}imes sqrt{3})hbox{-}{m Ag}\$: AN STM STUDY. Surface Review and Letters, 1999, 06, 1073-1078.	0.5	38
35	Control of Photodynamic Motions of Azobenzeneâ€Derivative Polymers by Laser Excitation Wavelength. Macromolecular Chemistry and Physics, 2007, 208, 1753-1763.	1.1	37
36	Topological Properties of Neuromorphic Nanowire Networks. Frontiers in Neuroscience, 2020, 14, 184.	1.4	37

#	Article	IF	CITATIONS
37	Structural and Cohesive Properties of aC60Monolayer. Physical Review Letters, 2001, 87, 048301.	2.9	36
38	Self-Assembled Molecular Nanowires of 6,13-Bis(methylthio)pentacene: Growth, Electrical Properties, and Applications. Nano Letters, 2008, 8, 3273-3277.	4.5	36
39	Switching Property of Atomic Switch Controlled by Solid Electrochemical Reaction. Japanese Journal of Applied Physics, 2006, 45, L364-L366.	0.8	35
40	Reversibility ontrolled Single Molecular Level Chemical Reaction in a C ₆₀ Monolayer via Ionization Induced by Scanning Transmission Microscopy. Small, 2008, 4, 538-541.	5.2	35
41	The electron transport properties of photo- and electron-beam-irradiated C60 films. Journal of Physics and Chemistry of Solids, 2004, 65, 343-348.	1.9	34
42	Controlled Modification of Superconductivity in Epitaxial Atomic Layer–Organic Molecule Heterostructures. Nano Letters, 2017, 17, 2287-2293.	4.5	34
43	Monolayer and Bilayer High Steps on Si(001)2×1 Vicinal Surface. Japanese Journal of Applied Physics, 1987, 26, L1186-L1188.	0.8	33
44	Mechanism of epitaxial growth of monolayer CaF on Si(111)-(7×7). Physical Review Letters, 1994, 72, 1718-1721.	2.9	33
45	What is inside carbon nanohorn aggregates?. Carbon, 2011, 49, 2074-2078.	5.4	32
46	Electrical properties of a two-dimensionally hexagonal C60 photopolymer. Journal of Applied Physics, 2004, 96, 443-445.	1.1	31
47	Structural Correlation among Different Phases in the Initial Stage of Epitaxial Growth of Au on Si(111). Japanese Journal of Applied Physics, 1994, 33, 3688-3695.	0.8	30
48	Carbon nanotube tip for scanning tunneling microscopy. Physica B: Condensed Matter, 2002, 323, 153-155.	1.3	30
49	Information dynamics in neuromorphic nanowire networks. Scientific Reports, 2021, 11, 13047.	1.6	30
50	Atomic scale modifications of hydrogen-terminated silicon 2×1 and 3×1 (001) surfaces by scanning tunneling microscope. Surface Science, 1998, 411, 203-214.	0.8	29
51	Temperature suppression of STM-induced desorption of hydrogen on Si(100) surfaces. Surface Science, 1999, 424, L329-L334.	0.8	29
52	Self-Alignment of Co Adatoms on In Atomic Wires by Quasi-One-Dimensional Electron-Gas-Meditated Interactions. Physical Review Letters, 2008, 101, 146104.	2.9	29
53	Dynamic Electrical Pathway Tuning in Neuromorphic Nanowire Networks. Advanced Functional Materials, 2020, 30, 2003679.	7.8	28
54	Fabrication and electron-beam-induced polymerization of C60 nanoribbon. Thin Solid Films, 2004, 464-465, 327-330.	0.8	27

#	Article	IF	CITATIONS
55	Direct Growth of Germanene at Interfaces between Van der Waals Materials and Ag(111). Advanced Functional Materials, 2021, 31, 2007038.	7.8	27
56	Nanojunction between Fullerene and One-Dimensional Conductive Polymer on Solid Surfaces. ACS Nano, 2014, 8, 12259-12264.	7.3	25
57	Atomically resolved structure of ligand-protected Au9 clusters on TiO2 nanosheets using aberration-corrected STEM. Journal of Chemical Physics, 2016, 144, 114703.	1.2	25
58	Associative routing through neuromorphic nanowire networks. AIP Advances, 2020, 10, .	0.6	25
59	Platinum nanodot formation by atomic point contact with a scanning tunneling microscope platinum tip. Applied Physics Letters, 1998, 73, 3360-3362.	1.5	24
60	Disappearance of the quasi-one-dimensional plasmon at the metal-insulator phase transition of indium atomic wires. Physical Review B, 2008, 77, .	1.1	24
61	Encapsulated Inorganic Nanostructures: A Route to Sizable Modulated, Noncovalent, On-Tube Potentials in Carbon Nanotubes. ACS Nano, 2011, 5, 2559-2569.	7.3	24
62	Improved electrical conductance through self-assembly of bioinspired peptides into nanoscale fibers. Materials Chemistry and Physics, 2015, 158, 52-59.	2.0	24
63	Epitaxial growth of WOxnanorod array on W(001). Science and Technology of Advanced Materials, 2004, 5, 647-649.	2.8	23
64	Functionalized carbon nanotubes for pH sensors based on SERS. Journal of Materials Chemistry, 2008, 18, 4759.	6.7	23
65	One-Dimensional Surface Reconstruction as an Atomic-Scale Template for the Growth of Periodically Striped Ag Films. Physical Review Letters, 2006, 96, 136104.	2.9	22
66	One-dimensional Schottky contact between ErSi2 nanowire and Si(001). Applied Physics Letters, 2006, 88, 233117.	1.5	22
67	Material dependence of switching speed of atomic switches made from silver sulfide and from copper sulfide. Journal of Physics: Conference Series, 2007, 61, 1157-1161.	0.3	21
68	Molecular-Scale Size Tuning of Covalently Bound Assembly of C60 Molecules. ACS Nano, 2011, 5, 7830-7837.	7.3	21
69	Heterogrowth of Ge on the Si(001)2 × 1 reconstructed surface. Surface Science, 1992, 273, 9-20.	0.8	20
70	Functionalization of carbon nanotubes with a pH-responsive molecule to produce a pH sensor. Nanotechnology, 2009, 20, 325501.	1.3	20
71	A quadruple-scanning-probe force microscope for electrical property measurements of microscopic materials. Nanotechnology, 2011, 22, 285205.	1.3	20
72	Reservoir Computing with Neuromemristive Nanowire Networks. , 2020, , .		20

#	Article	IF	CITATIONS
73	He/Ar-atom scattering from molecular monolayers: C ₆₀ /Pt(111) and graphene/Pt(111). Journal of Physics Condensed Matter, 2010, 22, 304010.	0.7	19
74	Double-Side-Coated Nanomechanical Membrane-Type Surface Stress Sensor (MSS) for One-Chip–One-Channel Setup. Langmuir, 2013, 29, 7551-7556.	1.6	19
75	Highly Ordered Cobalt–Phthalocyanine Chains on Fractional Atomic Steps: One-Dimensionality and Electron Hybridization. ACS Nano, 2013, 7, 1317-1323.	7.3	19
76	Aggregation Behavior of Ligand-Protected Au ₉ Clusters on Sputtered Atomic Layer Deposition TiO ₂ . Journal of Physical Chemistry C, 2017, 121, 10781-10789.	1.5	19
77	High Yielding Fabrication of Magnetically Responsive Coiled Single-Walled Carbon Nanotube under Flow. ACS Applied Nano Materials, 2019, 2, 5282-5289.	2.4	18
78	Local modification of hydrogen-terminated silicon surfaces by clean and hydrogen-covered STM tips. Surface Science, 1997, 386, 154-160.	0.8	17
79	A Method for Combinatorial Fabrication and Characterization of Organic/Inorganic Thin Film Devices in UHV. ACS Combinatorial Science, 2006, 8, 275-279.	3.3	17
80	Angled long tip to tuning fork probes for atomic force microscopy in various environments. Review of Scientific Instruments, 2011, 82, 043701.	0.6	17
81	Grouping and aggregation of ligand protected Au ₉ clusters on TiO ₂ nanosheets. RSC Advances, 2016, 6, 110765-110774.	1.7	17
82	Direct fabrication of high-resolution and high-performance flexible electronics via surface-activation-localized electroless plating. Chemical Engineering Journal, 2021, 416, 127644.	6.6	17
83	Neuromorphic nanowire networks: principles, progress and future prospects for neuro-inspired information processing. Advances in Physics: X, 2021, 6, .	1.5	17
84	Extraction, deposition, and displacement of atoms by STM. Microelectronic Engineering, 1996, 32, 191-201.	1.1	16
85	Atomic scale extraction of hydrogen atoms adsorbed on Si(001) with the scanning tunneling microscope. Applied Surface Science, 1997, 121-122, 107-110.	3.1	16
86	Nanoscale Control of Reversible Chemical Reaction Between Fullerene C ₆₀ Molecules Using Scanning Tunneling Microscope. Journal of Nanoscience and Nanotechnology, 2011, 11, 2829-2835.	0.9	16
87	Scanning tunneling microscopy and spectroscopy of electron-irradiated thin films of C60 molecules. Carbon, 2011, 49, 1829-1833.	5.4	16
88	Structure and stability of the out-of-phase boundary in a surface superlattice, Si(111)â^š3 × â^š3R30°—Ag. Surface Science, 1995, 344, 143-148.	0.8	15
89	Spatially resolved observation of Coulomb blockade and negative differential conductance on a Ag cluster on the clean GaAs(110) surface. Applied Physics Letters, 1999, 74, 1716-1718.	1.5	14
90	Low resistivity of Pt silicide nanowires measured using double-scanning-probe tunneling microscope. Applied Physics Letters, 2008, 92, 203114.	1.5	14

#	Article	IF	CITATIONS
91	Direct manipulation of intracellular stress fibres using a hook-shaped AFM probe. Nanotechnology, 2010, 21, 385102.	1.3	14
92	Fabrication of nanostructures by selective growth of C60 and Si on Si(111) substrate. Surface Science, 2006, 600, 2810-2816.	0.8	13
93	Irreversible and Reversible Structural Deformation and Electromechanical Behavior of Carbon Nanohorns Probed by Conductive AFM. Small, 2011, 7, 1169-1174.	5.2	13
94	A Single-Dipole Model of Surface Relief Grating Formation on Azobenzene Polymer Films. Langmuir, 2008, 24, 4260-4264.	1.6	12
95	Multiple-scanning-probe tunneling microscope with nanoscale positional recognition function. Review of Scientific Instruments, 2010, 81, 073706.	0.6	12
96	In situ, controlled and reproducible attachment of carbon nanotubes onto conductive AFM tips. Applied Surface Science, 2015, 335, 11-16.	3.1	12
97	Mechanisms of electron transport through bellows-shaped fullerene tubes. Journal of Chemical Physics, 2005, 122, 074702.	1.2	11
98	In-Situ Electrical Addressing of One-Dimensional Gold Nanoparticle Assemblies. Journal of Nanoscience and Nanotechnology, 2008, 8, 461-465.	0.9	11
99	Nanostencil-Fabricated Electrodes for Electron Transport Measurements of Atomically Thin Nanowires in Ultrahigh Vacuum. Japanese Journal of Applied Physics, 2008, 47, 1797-1799.	0.8	11
100	Tip-induced Electron Occupation of an Unoccupied Surface State in Scanning Tunneling Microscopy Imaging of a GaAs(110) Surface with Ag Clusters. Japanese Journal of Applied Physics, 1997, 36, L1336-L1339.	0.8	10
101	Creation and consumption of free Si atoms at the growth front of a CaF monolayer onSi(111)7×7. Physical Review B, 1998, 57, 1855-1859.	1.1	10
102	Strong linear polarization in scanning tunneling microscopy-induced luminescence from porous silicon. Applied Physics Letters, 1999, 74, 3842-3844.	1.5	10
103	Effect of 90 deg ferroelastic twin walls on lattice dynamics of nanocrystalline tetragonal ferroelectric perovskites. Applied Physics A: Materials Science and Processing, 2006, 86, 101-106.	1.1	10
104	Stable molecular orientations of a C60 dimer in a photoinduced dimer row. Carbon, 2007, 45, 1261-1266.	5.4	10
105	Optically monitored wetâ€chemical preparation of SEIRA active Au nanostructures. Surface and Interface Analysis, 2008, 40, 1681-1683.	0.8	10
106	The excitation of one-dimensional plasmons in Si and Au–Si complex atom wires. Nanotechnology, 2008, 19, 355204.	1.3	10
107	Initial stage of adsorption of octithiophene molecules on Cu(111). Surface Science, 2011, 605, 1021-1026.	0.8	10
108	Sleep-Dependent Memory Consolidation in a Neuromorphic Nanowire Network. ACS Applied Materials & Interfaces, 2020, 12, 50573-50580.	4.0	10

#	Article	IF	CITATIONS
109	Dual Surface Architectonics for Directed Selfâ€Assembly of Ultrahighâ€Resolution Electronics. Small, 2021, 17, e2101754.	5.2	10
110	Structural characterisation of gold nanowire arrays. Journal of Crystal Growth, 2008, 311, 194-199.	0.7	9
111	Ultrahigh-density data storage into thin films of fullerene molecules. Japanese Journal of Applied Physics, 2016, 55, 1102B4.	0.8	9
112	Emergent brain-like complexity from nanowire atomic switch networks: Towards neuromorphic synthetic intelligence. , 2018, , .		9
113	Harnessing adaptive dynamics in neuro-memristive nanowire networks for transfer learning. , 2020, , .		9
114	Neuromorphic Information Processing with Nanowire Networks. , 2020, , .		9
115	Self-Organizing, Environmentally Stable, and Low-Cost Copper–Nickel Complex Inks for Printed Flexible Electronics. ACS Applied Materials & Interfaces, 2022, 14, 8146-8156.	4.0	9
116	Spin-polarized electron tunneling detected using a scanning tunneling microscope. Surface Science, 1997, 386, 311-314.	0.8	8
117	<i>In Situ</i> FTIR, XPS, and STM Studies of the Nano-Structure of a Photopolymerized C ₆₀ Film. Molecular Crystals and Liquid Crystals, 2000, 340, 689-694.	0.3	8
118	Precisely Controlled Fabrication of a Highly Sensitive Au Sensor Film for Surface Enhanced Spectroscopy. Japanese Journal of Applied Physics, 2007, 46, L1222-L1224.	0.8	8
119	Multiple-probe scanning probe microscopes for nanoarchitectonic materials science. Japanese Journal of Applied Physics, 2016, 55, 1102A7.	0.8	8
120	Electronic Structures of Quaterthiophene and Septithiophene on Cu(111): Spatial Distribution of Adsorption-Induced States Studied by STM and DFT Calculation. Journal of Physical Chemistry C, 2016, 120, 6681-6688.	1.5	8
121	Clean superconducting In nanowires encapsulated within insulating ZnS nanotubes. Applied Physics Letters, 2009, 94, 053108.	1.5	7
122	Local modification of NaCl thin films on Cu(111) under different bias voltages. Thin Solid Films, 2012, 520, 2004-2008.	0.8	7
123	Atomic motion induced by a scanning tunneling microscope tip on the Si(111) surface. Surface Science, 1994, 320, L101-L104.	0.8	6
124	Edge enhancement of light emission from Au particles induced by an STM. Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 234, 396-400.	0.9	6
125	Intensity and polarization switching behaviors of light emission induced with a scanning tunneling microscope. Applied Physics Letters, 1998, 73, 2269-2271.	1.5	6
126	Absorption Wavelength Dependent Photodynamic Motions in Donor-Acceptor Type of Azobenzene Polymer Films. Japanese Journal of Applied Physics, 2006, 45, L169-L171.	0.8	6

#	Article	IF	CITATIONS
127	Substrate Dependent Low-Temperature Growth of Thin Ag Films: Study on Si(111)–In Surfaces. Japanese Journal of Applied Physics, 2007, 46, 5975-5980.	0.8	6
128	Two-Step Desorption Process of Au Nanoparticles in D2O Suspension on Amino-Terminated SiO2/Si Substrate Induced by Small Thiol Molecules. Japanese Journal of Applied Physics, 2007, 46, 3020-3023.	0.8	6
129	Strong electron confinement by stacking-fault-induced fractional steps on Ag(111) surfaces. Physical Review B, 2010, 82, .	1.1	6
130	One-dimensional surface states on a striped Ag thin film with stacking fault arrays. Physical Review B, 2011, 84, .	1.1	6
131	Phase-operation for conduction electron by atomic-scale scattering via single point-defect. Applied Physics Letters, 2014, 104, .	1.5	6
132	Controlling molecular condensation/diffusion of copper phthalocyanine by local electric field induced with scanning tunneling microscope tip. Japanese Journal of Applied Physics, 2018, 57, 020301.	0.8	6
133	Segregation of metallic germanium atoms at the graphene/metal interface toward germanene growth. Japanese Journal of Applied Physics, 2020, 59, SN1004.	0.8	6
134	Three Distinct Terraces on a β-(ET)2I3 Surface Studied by Scanning Tunneling Microscopy. Japanese Journal of Applied Physics, 1999, 38, L464-L466.	0.8	5
135	First-principles electronic structure calculations for peanut-shaped C120molecules. Science and Technology of Advanced Materials, 2004, 5, 617-620.	2.8	5
136	First-principles study on electronic responses of a C60 molecule to external electric fields. Chemical Physics, 2007, 342, 135-140.	0.9	5
137	Enhanced spin contrast of epitaxial Mn films on Fe(100) by spin-polarized scanning tunneling microscopy. Applied Physics Letters, 2011, 98, 123106.	1.5	5
138	Organic Memristive Devices Based on Squaraine Nanowires. ACS Applied Electronic Materials, 2020, 2, 3088-3092.	2.0	5
139	Surface and interface structural control using coaxial impact-collision ion scattering spectroscopy (CAICISS). Nuclear Instruments & Methods in Physics Research B, 1995, 99, 598-601.	0.6	4
140	Luminescence from the transition metal iron induced with a scanning tunneling microscope. Surface Science, 1998, 415, L1032-L1036.	0.8	4
141	Temperature-Dependent Growth of Smooth DNA Film. Japanese Journal of Applied Physics, 2006, 45, 5183-5185.	0.8	4
142	Self-assembled honeycomb lattice in the monolayer of cyclic thiazyl diradical BDTDA (= 4,4′-bis(1,2,3,5-dithiadiazolyl)) on Cu(111) with a zero-bias tunneling spectra anomaly. Scientific Reports, 2015, 5, 18359.	1.6	4
143	Local dimerization and dedimerization of C60 molecules under a tip of scanning tunneling microscope: A first-principles study. Carbon, 2020, 159, 638-647.	5.4	4
144	Analysis of STM Images after Atom Extractions from the Si(111) 7 × 7 Unit Cell through a Cluster Model. Journal of Physical Chemistry B, 1997, 101, 9570-9573.	1.2	3

#	Article	IF	CITATIONS
145	CBE growth of GaN on GaAs(001) and (111)B substrates using monomethylhydrazine. Journal of Crystal Growth, 2000, 209, 373-377.	0.7	3
146	Plasmon confinement in atomically thin and flat metallic films. , 2007, , .		3
147	Optimization of Interface Resistance between Carbon Nanotubes and Probe-Shaped Titanium Wire. Japanese Journal of Applied Physics, 2010, 49, 035002.	0.8	3
148	Anisotropic structural modulation of epitaxial Au(111) thin films on striped Ag substrates. Physical Review B, 2010, 81, .	1.1	3
149	Resistance of single polyaniline fibers and their junctions measured by double-probe atomic force microscopy. Japanese Journal of Applied Physics, 2016, 55, 08NB09.	0.8	3
150	Observation of lateral band-bending in the edge vicinity of atomically-thin Bi insulating film formed on Si(111) surface. Surface Science, 2016, 644, 41-45.	0.8	3
151	Electron-beam irradiation of photopolymerized C60 film studied using <i>in situ</i> scanning tunneling microscope, <i>in situ</i> Fourier-transform infrared spectroscopy, and first-principles calculations. AIP Advances, 2020, 10, .	0.6	3
152	Anomalous electron tunneling through a Ag island on the GaAs(110) surface observed by the current image tunneling spectroscopy (CITS). Applied Surface Science, 1998, 123-124, 166-170.	3.1	2
153	Scanning Tunneling Microscope Study of a Local Electronic State Surrounding Mn Nanoclusters on Graphite. Japanese Journal of Applied Physics, 2006, 45, L469-L471.	0.8	2
154	Octithiophene on Cu(111) and Au(111): Formation and Electronic Structure of Molecular Chains and Films. Journal of Nanoscience and Nanotechnology, 2012, 12, 4007-4011.	0.9	2
155	Locality and lateral modulations of quantum well states in Ag(100) thin films studied using a scanning tunneling microscope. Surface Science, 2015, 637-638, 58-62.	0.8	2
156	Observation of room temperature electronic localization through a single graphene layer on sapphire. Japanese Journal of Applied Physics, 2019, 58, 055007.	0.8	2
157	Local electronic structure of a quantum point contact observed with STM. Physical Review B, 2006, 74, .	1.1	1
158	Epitaxial growth of WO _{<i>x</i>} nanorods on singleâ€crystal tungsten substrate. Electronics and Communications in Japan, 2008, 91, 20-24.	0.3	1
159	Modification of the surface-state occupancy on noble metal films with stacking fault arrays. Applied Physics Letters, 2012, 100, 141609.	1.5	1
160	Excitation spectrum of Josephson vortices on surface superconductor. Journal of Physics: Conference Series, 2014, 568, 022022.	0.3	1
161	Impact of Surface Conditions on the Superconductivity of Si(111)-(√7 ×) Tj ETQq1 1 0.78	4314 rgBT 0.1	Oyerlock 10
162	Mechanism of field-induced manipulation of Cu-phthalocyanines on a Bi surface using scanning	1.8	1

tunneling microscope. Journal of Molecular Structure, 2019, 1181, 563-567. 162

1.8

#	Article	IF	CITATIONS
163	Sub-monolayer Au ₉ cluster formation <i>via</i> pulsed nozzle cluster deposition. Nanoscale Advances, 2020, 2, 4051-4061.	2.2	1
164	Raman intensity oscillation of graphene over SiO2/Si micro-cavity. Japanese Journal of Applied Physics, 2020, 59, 028001.	0.8	1
165	STS Study of 2D Subband State Formed in the Space Charge Layer of Si(111)-βâ^š3 × â^š3-Bi. E-Journal of Surface Science and Nanotechnology, 2014, 12, 217-220.	0.1	1
166	Nanoscale Positional Recognition of Multiple Probes of a Multiple-Scanning-Probe Microscope. IEEJ Transactions on Electronics, Information and Systems, 2007, 127, 1314-1319.	0.1	1
167	Bias voltage-dependent scanning tunneling microscopy images of a GaAs(110) surface with small Ag clusters. Applied Surface Science, 1998, 130-132, 425-430.	3.1	Ο
168	Bias dependence of STM profiles around the quantum point contact. Surface Science, 2006, 600, 4319-4322.	0.8	0
169	Integration of individual nanoscale structures into devices using dynamic nanostenciling. , 2008, , .		0

170 走査ãfžãf«ãfãf—ãfãf¼ãf−é¡•å¾®éţã,'使ã£ãŸãfŽãf¯ã,¤f¤f¼ã®é>»æ°—è¼,é€ç‰¹æ€§è˜æ,¬. Journal ofathe Vaœum Socie

171	First-Principles Study on Electric and Electronic Properties of P-Introduced Si Monatomic Chains. Journal of Computational and Theoretical Nanoscience, 2009, 6, 2635-2639.	0.4	0
172	Nanoscale control of unbound and bound states of fullerene C <inf>60</inf> molecules for ultradense data storage. , 2010, , .		0
173	Nonwetting behavior of "white" graphene coatings. , 2012, , .		0
174	Epitaxial Growth of WOx Nanorod on Single Crystal Tungsten Substrate. IEEJ Transactions on Electronics, Information and Systems, 2007, 127, 1320-1323.	0.1	0
175	Adsorption and Desorption of Au Nanoparticles Monitored by Infrared Spectroscopy. IEEJ Transactions on Electronics, Information and Systems, 2007, 127, 2171-2174.	0.1	0
176	Stability of Surface Steps on .BETAET2I3 Surfaces and Removal of Molecules by an STM Tip Shinku/Journal of the Vacuum Society of Japan, 1999, 42, 245-248.	0.2	0