
Matthew England

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2248902/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 2014, 4, 111-116.	8.1	1,572
2	Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Climate Change, 2014, 4, 222-227.	8.1	1,115
3	Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nature Geoscience, 2011, 4, 741-749.	5.4	781
4	On the water masses and mean circulation of the South Atlantic Ocean. Journal of Geophysical Research, 1999, 104, 20863-20883.	3.3	622
5	Coordinated Ocean-ice Reference Experiments (COREs). Ocean Modelling, 2009, 26, 1-46.	1.0	573
6	What causes southeast Australia's worst droughts?. Geophysical Research Letters, 2009, 36, .	1.5	527
7	Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nature Climate Change, 2014, 4, 888-892.	8.1	480
8	Increased frequency of extreme LaÂNiña events under greenhouse warming. Nature Climate Change, 2015, 5, 132-137.	8.1	479
9	Origin, dynamics and evolution of ocean garbage patches from observed surface drifters. Environmental Research Letters, 2012, 7, 044040.	2.2	380
10	Making sense of the early-2000s warming slowdown. Nature Climate Change, 2016, 6, 224-228.	8.1	333
11	Evolution of the Southern Annular Mode during the past millennium. Nature Climate Change, 2014, 4, 564-569.	8.1	277
12	Coupled Ocean–Atmosphere–Ice Response to Variations in the Southern Annular Mode. Journal of Climate, 2006, 19, 4457-4486.	1.2	256
13	Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nature Climate Change, 2016, 6, 917-926.	8.1	253
14	The Age of Water and Ventilation Timescales in a Global Ocean Model. Journal of Physical Oceanography, 1995, 25, 2756-2777.	0.7	207
15	El Niño Modoki Impacts on Australian Rainfall. Journal of Climate, 2009, 22, 3167-3174.	1.2	207
16	Choosing the future of Antarctica. Nature, 2018, 558, 233-241.	13.7	172
17	Coupled biophysical global ocean model and molecular genetic analyses identify multiple introductions of cryptogenic species. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11968-11973.	3.3	168
18	Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophysical Research Letters, 2014, 41, 4601-4610.	1.5	165

#	Article	IF	CITATIONS
19	Representing the Global-Scale Water Masses in Ocean General Circulation Models. Journal of Physical Oceanography, 1993, 23, 1523-1552.	0.7	164
20	Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning. Nature Communications, 2014, 5, 5107.	5.8	161
21	Ekman Transport Dominates Local Air–Sea Fluxes in Driving Variability of Subantarctic Mode Water. Journal of Physical Oceanography, 2002, 32, 1308-1321.	0.7	159
22	Effects of volcanism on tropical variability. Geophysical Research Letters, 2015, 42, 6024-6033.	1.5	150
23	Cold Tongue and Warm Pool ENSO Events in CMIP5: Mean State and Future Projections. Journal of Climate, 2014, 27, 2861-2885.	1.2	147
24	Projected Changes to the Southern Hemisphere Ocean and Sea Ice in the IPCC AR4 Climate Models. Journal of Climate, 2009, 22, 3047-3078.	1.2	144
25	Indian and Pacific Ocean Influences on Southeast Australian Drought and Soil Moisture. Journal of Climate, 2011, 24, 1313-1336.	1.2	139
26	Contributions of Indian Ocean Sea Surface Temperatures to Enhanced East African Rainfall. Journal of Climate, 2009, 22, 993-1013.	1.2	136
27	Challenges and Prospects in Ocean Circulation Models. Frontiers in Marine Science, 2019, 6, .	1.2	133
28	Hindcasting the continuum of Dansgaard–Oeschger variability: mechanisms, patterns and timing. Climate of the Past, 2014, 10, 63-77.	1.3	130
29	Detection of Coherent Oceanic Structures via Transfer Operators. Physical Review Letters, 2007, 98, 224503.	2.9	128
30	Seasonal Relationships between Large-Scale Climate Variability and Antarctic Sea Ice Concentration. Journal of Climate, 2012, 25, 5451-5469.	1.2	127
31	On the Interannual Variability of the Indonesian Throughflow and Its Linkage with ENSO. Journal of Climate, 2005, 18, 1435-1444.	1.2	123
32	The Effect of the South Pacific Convergence Zone on the Termination of El Niño Events and the Meridional Asymmetry of ENSO*. Journal of Climate, 2012, 25, 5566-5586.	1.2	117
33	Late-twentieth-century emergence of the El Niño propagation asymmetry and future projections. Nature, 2013, 504, 126-130.	13.7	116
34	Coupling of Indo-Pacific climate variability over the last millennium. Nature, 2020, 579, 385-392.	13.7	116
35	An analysis of late twentieth century trends in Australian rainfall. International Journal of Climatology, 2009, 29, 791-807.	1.5	113
36	Oceanic Response to Changes in the Latitude of the Southern Hemisphere Subpolar Westerly Winds. Journal of Climate, 2004, 17, 1040-1054.	1.2	112

#	Article	IF	CITATIONS
37	Interannual Rainfall Extremes over Southwest Western Australia Linked to Indian Ocean Climate Variability. Journal of Climate, 2006, 19, 1948-1969.	1.2	110
38	Using chemical tracers to assess ocean models. Reviews of Geophysics, 2001, 39, 29-70.	9.0	109
39	Effect of the Drake Passage Throughflow on Global Climate. Journal of Physical Oceanography, 2004, 34, 1254-1266.	0.7	108
40	Southern Hemisphere westerlies as a driver of the early deglacial atmospheric CO2 rise. Nature Communications, 2018, 9, 2503.	5.8	107
41	Pacificâ€ŧoâ€Indian Ocean connectivity: Tasman leakage, Indonesian Throughflow, and the role of ENSO. Journal of Geophysical Research: Oceans, 2014, 119, 1365-1382.	1.0	105
42	Using chlorofluorocarbons to assess ocean climate models. Geophysical Research Letters, 1995, 22, 3051-3054.	1.5	104
43	On the response of the oceanic wind-driven circulation to atmospheric CO2 increase. Climate Dynamics, 2005, 25, 415-426.	1.7	100
44	Influence of Southern Hemisphere Winds on North Atlantic Deep Water Flow. Journal of Physical Oceanography, 1997, 27, 2040-2054.	0.7	97
45	Sensitivity of a global coupled ocean-sea ice model to the parameterization of vertical mixing. Journal of Geophysical Research, 1999, 104, 13681-13695.	3.3	93
46	Effect of the deepening of the Tasman Gateway on the global ocean. Paleoceanography, 2011, 26, .	3.0	92
47	Model tropical Atlantic biases underpin diminished Pacific decadal variability. Nature Climate Change, 2018, 8, 493-498.	8.1	92
48	Localized rapid warming of West Antarctic subsurface waters by remote winds. Nature Climate Change, 2017, 7, 595-603.	8.1	91
49	ACCESS-OM2 v1.0: a global ocean–sea ice model at three resolutions. Geoscientific Model Development, 2020, 13, 401-442.	1.3	91
50	Meridional movement of wind anomalies during ENSO events and their role in event termination. Geophysical Research Letters, 2013, 40, 749-754.	1.5	90
51	Separating Internal Variability from the Externally Forced Climate Response. Journal of Climate, 2015, 28, 8184-8202.	1.2	90
52	Anomalous Rainfall over Southwest Western Australia Forced by Indian Ocean Sea Surface Temperatures. Journal of Climate, 2008, 21, 5113-5134.	1.2	88
53	Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: A dataâ€model comparison study. Paleoceanography, 2017, 32, 2-17.	3.0	85
54	Initialized Earth System prediction from subseasonal to decadal timescales. Nature Reviews Earth & Environment, 2021, 2, 340-357.	12.2	85

#	Article	IF	CITATIONS
55	Drivers of decadal hiatus periods in the 20th and 21st centuries. Geophysical Research Letters, 2014, 41, 5978-5986.	1.5	84
56	Tropical Pacific SST Drivers of Recent Antarctic Sea Ice Trends. Journal of Climate, 2016, 29, 8931-8948.	1.2	82
57	Atlantic-Pacific seesaw and its role in outgassing CO ₂ during Heinrich events. Paleoceanography, 2014, 29, 58-70.	3.0	81
58	The Mechanism for Antarctic Intermediate Water Renewal in a World Ocean Model. Journal of Physical Oceanography, 1993, 23, 1553-1560.	0.7	80
59	Tropical Connections to Climatic Change in the Extratropical Southern Hemisphere: The Role of Atlantic SST Trends. Journal of Climate, 2014, 27, 4923-4936.	1.2	80
60	Global changes in oceanic mesoscale currents over the satellite altimetry record. Nature Climate Change, 2021, 11, 397-403.	8.1	80
61	Multi-decadal modulation of the El Niño–Indian monsoon relationship by Indian Ocean variability. Environmental Research Letters, 2011, 6, 034006.	2.2	79
62	Evidence for link between modelled trends in Antarctic sea ice and underestimated westerly wind changes. Nature Communications, 2016, 7, 10409.	5.8	77
63	On the Formation of Antarctic Intermediate and Bottom Water in Ocean General Circulation Models. Journal of Physical Oceanography, 1992, 22, 918-926.	0.7	76
64	Constraining Wind Stress Products with Sea Surface Height Observations and Implications for Pacific Ocean Sea Level Trend Attribution*. Journal of Climate, 2012, 25, 8164-8176.	1.2	76
65	Atlantic and Pacific tropics connected by mutually interactive decadal-timescale processes. Nature Geoscience, 2021, 14, 36-42.	5.4	76
66	Inferred changes in El Niño–Southern Oscillation variance over the past six centuries. Climate of the Past, 2013, 9, 2269-2284.	1.3	75
67	Teleconnections between Tropical Pacific SST Anomalies and Extratropical Southern Hemisphere Climate. Journal of Climate, 2015, 28, 56-65.	1.2	75
68	The Contribution of Indian Ocean Sea Surface Temperature Anomalies on Australian Summer Rainfall during El Niño Events. Journal of Climate, 2011, 24, 3734-3747.	1.2	74
69	Interannual Extremes in New Zealand Precipitation Linked to Modes of Southern Hemisphere Climate Variability. Journal of Climate, 2007, 20, 5418-5440.	1.2	72
70	Changes in South Pacific rainfall bands in a warming climate. Nature Climate Change, 2013, 3, 417-423.	8.1	71
71	Vertical resolution of baroclinic modes in global ocean models. Ocean Modelling, 2017, 113, 50-65.	1.0	71
72	The Ocean Circulation in Thermohaline Coordinates. Journal of Physical Oceanography, 2012, 42, 708-724.	0.7	69

#	Article	IF	CITATIONS
73	How sensitive are the Pacific–tropical North Atlantic teleconnections to the position and intensity of El Niño-related warming?. Climate Dynamics, 2016, 46, 1841-1860.	1.7	69
74	Coupled Ocean–Atmosphere Feedback in the Southern Annular Mode. Journal of Climate, 2007, 20, 3677-3692.	1.2	68
75	Warm Circumpolar Deep Water transport toward Antarctica driven by local dense water export in canyons. Science Advances, 2020, 6, eaav2516.	4.7	68
76	Chlorofluorocarbon uptake in a world ocean model: 1. Sensitivity to the surface gas forcing. Journal of Geophysical Research, 1994, 99, 25215.	3.3	66
77	Impact of Indo-Pacific Feedback Interactions on ENSO Dynamics Diagnosed Using Ensemble Climate Simulations. Journal of Climate, 2012, 25, 7743-7763.	1.2	65
78	Regional and Global Impacts of Land Cover Change and Sea Surface Temperature Anomalies. Journal of Climate, 2009, 22, 3248-3269.	1.2	64
79	Future Projections of Antarctic Ice Shelf Melting Based on CMIP5 Scenarios. Journal of Climate, 2018, 31, 5243-5261.	1.2	62
80	Effect of anomalous warming in the central Pacific on the Australian monsoon. Geophysical Research Letters, 2009, 36, .	1.5	60
81	Palaeoclimate perspectives on the Indian Ocean Dipole. Quaternary Science Reviews, 2020, 237, 106302.	1.4	60
82	Southern Hemisphere Westerly Wind Control over the Ocean's Thermohaline Circulation. Journal of Climate, 2009, 22, 1277-1286.	1.2	59
83	Multi-decadal projections of surface and interior pathways of the Fukushima Cesium-137 radioactive plume. Deep-Sea Research Part I: Oceanographic Research Papers, 2013, 80, 37-46.	0.6	59
84	Abyssal connections of Antarctic Bottom Water in a Southern Ocean State Estimate. Geophysical Research Letters, 2013, 40, 2177-2182.	1.5	57
85	Historical and Projected Changes in the Southern Hemisphere Surface Westerlies. Geophysical Research Letters, 2021, 48, e2020GL090849.	1.5	57
86	Global comparison of the regional rainfall results of enhanced greenhouse coupled and mixed layer ocean experiments: Implications for climate change scenario development. Climatic Change, 1996, 33, 497-519.	1.7	56
87	Modulation of Australian Precipitation by Meridional Gradients in East Indian Ocean Sea Surface Temperature. Journal of Climate, 2009, 22, 5597-5610.	1.2	56
88	Tropical climate variability: interactions across the Pacific, Indian, and Atlantic Oceans. Climate Dynamics, 2017, 48, 2173-2190.	1.7	56
89	How did ocean warming affect Australian rainfall extremes during the 2010/2011 La Niña event?. Geophysical Research Letters, 2015, 42, 9942-9951.	1.5	55
90	Chlorofluorocarbon uptake in a World Ocean model: 2. Sensitivity to surface thermohaline forcing and subsurface mixing parameterizations. Journal of Geophysical Research, 1997, 102, 15709-15731.	3.3	53

#	Article	IF	CITATIONS
91	Sensitivity of Ventilation Rates and Radiocarbon Uptake to Subgrid-Scale Mixing in Ocean Models. Journal of Physical Oceanography, 1999, 29, 2802-2828.	0.7	53
92	Southern Ocean overturning across streamlines in an eddying simulation of the Antarctic Circumpolar Current. Ocean Science, 2007, 3, 491-507.	1.3	53
93	Comparison of Low-Frequency Internal Climate Variability in CMIP5 Models and Observations. Journal of Climate, 2017, 30, 4763-4776.	1.2	53
94	Causes of Late Twentieth-Century Trends in New Zealand Precipitation. Journal of Climate, 2009, 22, 3-19.	1.2	51
95	The influence of Southern Hemisphere seaâ€ice extent on the latitude of the midâ€latitude jet stream. Geophysical Research Letters, 2011, 38, .	1.5	51
96	Future Changes to El Niño–Southern Oscillation Temperature and Precipitation Teleconnections. Geophysical Research Letters, 2017, 44, 10,608.	1.5	50
97	Australian Monsoon Variability Driven by a Gill–Matsuno-Type Response to Central West Pacific Warming. Journal of Climate, 2010, 23, 4717-4736.	1.2	49
98	Interannual Tasmanian Rainfall Variability Associated with Large-Scale Climate Modes. Journal of Climate, 2009, 22, 4383-4397.	1.2	48
99	Genesis of Indian Ocean Mixed Layer Temperature Anomalies: A Heat Budget Analysis. Journal of Climate, 2010, 23, 5375-5403.	1.2	48
100	On the Choice of Ensemble Mean for Estimating the Forced Signal in the Presence of Internal Variability. Journal of Climate, 2018, 31, 5681-5693.	1.2	48
101	Tasman leakage in a fineâ€resolution ocean model. Geophysical Research Letters, 2012, 39, .	1.5	47
102	Observed variations in multidecadal Antarctic sea ice trends during 1979–2012. Geophysical Research Letters, 2013, 40, 3643-3648.	1.5	46
103	Testing the sensitivity of the East Antarctic Ice Sheet to Southern Ocean dynamics: past changes and future implications. Journal of Quaternary Science, 2014, 29, 91-98.	1.1	46
104	Dynamics and Predictability of El Niño–Southern Oscillation: An Australian Perspective on Progress and Challenges. Bulletin of the American Meteorological Society, 2019, 100, 403-420.	1.7	46
105	Effect of Ocean Gateway Changes under Greenhouse Warmth. Journal of Climate, 2009, 22, 6639-6652.	1.2	45
106	Impacts of Broad-Scale Surface Freshening of the Southern Ocean in a Coupled Climate Model. Journal of Climate, 2018, 31, 2613-2632.	1.2	43
107	Projected Slowdown of Antarctic Bottom Water Formation in Response to Amplified Meltwater Contributions. Journal of Climate, 2019, 32, 6319-6335.	1.2	42
108	Tropical Teleconnections to Antarctic Sea Ice During Austral Spring 2016 in Coupled Pacemaker Experiments. Geophysical Research Letters, 2019, 46, 6848-6858.	1.5	42

#	Article	IF	CITATIONS
109	The effect of a northward shift in the southern hemisphere westerlies on the global ocean. Progress in Oceanography, 2008, 79, 1-19.	1.5	41
110	Sea level changes forced by Southern Ocean winds. Geophysical Research Letters, 2013, 40, 5710-5715.	1.5	41
111	Model under-representation of decadal Pacific trade wind trends and its link to tropical Atlantic bias. Climate Dynamics, 2018, 50, 1471-1484.	1.7	41
112	Simulations of CFC content and water mass age in the deep North Atlantic. Journal of Geophysical Research, 1998, 103, 15885-15901.	3.3	40
113	Robustness of the modes of Indo-Pacific sea level variability. Climate Dynamics, 2015, 45, 1281-1298.	1.7	40
114	Robust warming projections despite the recent hiatus. Nature Climate Change, 2015, 5, 394-396.	8.1	40
115	Causes of differences in model and satellite tropospheric warming rates. Nature Geoscience, 2017, 10, 478-485.	5.4	40
116	Diathermal Heat Transport in a Global Ocean Model. Journal of Physical Oceanography, 2019, 49, 141-161.	0.7	40
117	Antarctic Intermediate Water Circulation and Variability in a Coupled Climate Model. Journal of Physical Oceanography, 2004, 34, 2160-2179.	0.7	37
118	On the control of glacialâ€interglacial atmospheric CO ₂ variations by the Southern Hemisphere westerlies. Geophysical Research Letters, 2010, 37, .	1.5	37
119	Impact of oceanic circulation changes on atmospheric <i>δ</i> ¹³ CO ₂ . Global Biogeochemical Cycles, 2015, 29, 1944-1961.	1.9	35
120	Reduction in surface climate change achieved by the 1987 Montreal Protocol. Environmental Research Letters, 2019, 14, 124041.	2.2	35
121	Role of the Drake Passage in Controlling the Stability of the Ocean's Thermohaline Circulation. Journal of Climate, 2005, 18, 1957-1966.	1.2	34
122	The Role of the Indonesian Throughflow on ENSO Dynamics in a Coupled Climate Model. Journal of Climate, 2011, 24, 585-601.	1.2	34
123	Contribution of enhanced Antarctic Bottom Water formation to Antarctic warm events and millennial-scale atmospheric CO2 increase. Earth and Planetary Science Letters, 2015, 413, 37-50.	1.8	34
124	Historical and Future Projected Warming of Antarctic Shelf Bottom Water in CMIP6 Models. Geophysical Research Letters, 2021, 48, e2021GL092752.	1.5	34
125	South American rainfall impacts associated with interâ€El Niño variations. Geophysical Research Letters, 2009, 36, .	1.5	33
126	Truth table invariant cylindrical algebraic decomposition. Journal of Symbolic Computation, 2016, 76, 1-35.	0.5	32

#	Article	IF	CITATIONS
127	Wind Forced Variability in Eddy Formation, Eddy Shedding, and the Separation of the East Australian Current. Journal of Geophysical Research: Oceans, 2017, 122, 9980-9998.	1.0	32
128	Anisotropy of eddy variability in the global ocean. Ocean Modelling, 2015, 95, 53-65.	1.0	31
129	Hydrographic conditions in the Brazil-Malvinas Confluence during austral summer 1990. Journal of Geophysical Research, 1995, 100, 10655.	3.3	30
130	North Atlantic Climate Response to Lake Agassiz Drainage at Coarse and Ocean Eddy-Permitting Resolutions. Journal of Climate, 2013, 26, 2651-2667.	1.2	30
131	Intercomparison of Antarctic ice-shelf, ocean, and sea-ice interactions simulated by MetROMS-iceshelf and FESOM 1.4. Geoscientific Model Development, 2018, 11, 1257-1292.	1.3	30
132	An off-line 3D model of anthropogenic CO2uptake by the oceans. Geophysical Research Letters, 2001, 28, 547-550.	1.5	29
133	Role of Pacific trade winds in driving ocean temperatures during the recent slowdown and projections under a wind trend reversal. Climate Dynamics, 2018, 51, 321-336.	1.7	27
134	Role of Tropical Variability in Driving Decadal Shifts in the Southern Hemisphere Summertime Eddy-Driven Jet. Journal of Climate, 2020, 33, 5445-5463.	1.2	27
135	Sensitivity of South American summer rainfall to tropical Pacific Ocean SST anomalies. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	26
136	Interbasin and interhemispheric impacts of a collapsed Atlantic Overturning Circulation. Nature Climate Change, 2022, 12, 558-565.	8.1	26
137	Implications of a new eddy parameterization for ocean models. Geophysical Research Letters, 1996, 23, 2085-2088.	1.5	25
138	Can Isopycnal Mixing Control the Stability of the Thermohaline Circulation in Ocean Climate Models?. Journal of Climate, 2006, 19, 5637-5651.	1.2	25
139	Obliquity Control On Southern Hemisphere Climate During The Last Glacial. Scientific Reports, 2015, 5, 11673.	1.6	25
140	Global linkages originating from decadal oceanic variability in the subpolar North Atlantic. Geophysical Research Letters, 2016, 43, 10,909.	1.5	25
141	Evaluation of Interior Circulation in a High-Resolution Global Ocean Model. Part I: Deep and Bottom Waters. Journal of Physical Oceanography, 2004, 34, 2592-2614.	0.7	24
142	Sensitivity of the Atlantic Thermohaline Circulation and Its Stability to Basin-Scale Variations in Vertical Mixing. Journal of Climate, 2006, 19, 5467-5478.	1.2	24
143	Global Mean Surface Temperature Response to Largeâ€Scale Patterns of Variability in Observations and CMIP5. Geophysical Research Letters, 2019, 46, 2232-2241.	1.5	24
144	Sensitivity of the Present-Day Climate to Freshwater Forcing Associated with Antarctic Sea Ice Loss. Journal of Climate, 2008, 21, 3936-3946.	1.2	23

#	Article	IF	CITATIONS
145	Observed ENSO teleconnections to Southern Ocean SST anomalies diagnosed from a surface mixed layer heat budget. Geophysical Research Letters, 2011, 38, .	1.5	23
146	Vertical Heat Transport by Ocean Circulation and the Role of Mechanical and Haline Forcing. Journal of Physical Oceanography, 2013, 43, 2095-2112.	0.7	23
147	Forcing of anthropogenic aerosols on temperature trends of the sub-thermocline southern Indian Ocean. Scientific Reports, 2013, 3, 2245.	1.6	23
148	Response of Southern Ocean Ventilation to Changes in Midlatitude Westerly Winds. Journal of Climate, 2019, 32, 5345-5361.	1.2	23
149	Circumpolar Deep Water Circulation and Variability in a Coupled Climate Model. Journal of Physical Oceanography, 2006, 36, 1523-1552.	0.7	22
150	Potential for Southern Hemisphere climate surprises. Journal of Quaternary Science, 2015, 30, 391-395.	1.1	22
151	Thermal Expansion in Ocean and Coupled General Circulation Models. Journal of Climate, 2000, 13, 1384-1405.	1.2	21
152	The Role of Bottom Pressure Torques on the Interior Pathways of North Atlantic Deep Water. Journal of Physical Oceanography, 2012, 42, 110-125.	0.7	21
153	ENSOâ€driven interhemispheric Pacific mass transports. Journal of Geophysical Research: Oceans, 2014, 119, 6221-6237.	1.0	21
154	Indo-Pacific Climate Interactions in the Absence of an Indonesian Throughflow. Journal of Climate, 2015, 28, 5017-5029.	1.2	20
155	A surface layer variance heat budget for ENSO. Geophysical Research Letters, 2015, 42, 3529-3537.	1.5	19
156	Uncertainty in near-term global surface warming linked to tropical Pacific climate variability. Nature Communications, 2019, 10, 1990.	5.8	19
157	The Role of Oceanic Heat Transport and Wind Stress Forcing in Abrupt Millennial-Scale Climate Transitions. Journal of Climate, 2010, 23, 2233-2256.	1.2	18
158	Sensitivity of ocean oxygenation to variations in tropical zonal wind stress magnitude. Global Biogeochemical Cycles, 2014, 28, 909-926.	1.9	18
159	Effects of the Mount Pinatubo eruption on decadal climate prediction skill of Pacific sea surface temperatures. Geophysical Research Letters, 2015, 42, 10,840.	1.5	18
160	CMIP5 Intermodel Relationships in the Baseline Southern Ocean Climate System and With Future Projections. Earth's Future, 2021, 9, e2020EF001873.	2.4	18
161	South Atlantic circulation in a world ocean model. Annales Geophysicae, 1994, 12, 812-825.	0.6	17
162	Reduced Stability of the Atlantic Meridional Overturning Circulation due to Wind Stress Feedback during Glacial Times. Journal of Climate, 2008, 21, 6260-6282.	1.2	17

#	Article	IF	CITATIONS
163	Abrupt millennial variability and interdecadal-interstadial oscillations in a global coupled model: sensitivity to the background climate state. Climate Dynamics, 2012, 39, 259-275.	1.7	17
164	Response of Southern Ocean Convection and Abyssal Overturning to Surface Buoyancy Perturbations. Journal of Climate, 2015, 28, 4263-4278.	1.2	17
165	Spurious sea ice formation caused by oscillatory ocean tracer advection schemes. Ocean Modelling, 2017, 116, 108-117.	1.0	17
166	Contribution of tropical instability waves to ENSO irregularity. Climate Dynamics, 2019, 52, 1837-1855.	1.7	17
167	Barotropic Kelvin Waveâ€Induced Bottom Boundary Layer Warming Along the West Antarctic Peninsula. Journal of Geophysical Research: Oceans, 2019, 124, 1595-1615.	1.0	17
168	Precise Calculations of the Existence of Multiple AMOC Equilibria in Coupled Climate Models. Part I: Equilibrium States. Journal of Climate, 2012, 25, 282-298.	1.2	16
169	Response to Comment on "Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures― Science, 2015, 350, 1326-1326.	6.0	16
170	Can Australian Multiyear Droughts and Wet Spells Be Generated in the Absence of Oceanic Variability?. Journal of Climate, 2016, 29, 6201-6221.	1.2	16
171	Atlantic Ocean Heat Transport Enabled by Indoâ€Pacific Heat Uptake and Mixing. Geophysical Research Letters, 2019, 46, 13939-13949.	1.5	16
172	Different controls of tropical cyclone activity in the Eastern Pacific for two types of El Niño. Geophysical Research Letters, 2016, 43, 1679-1686.	1.5	15
173	Ice–Atmosphere Feedbacks Dominate the Response of the Climate System to Drake Passage Closure. Journal of Climate, 2017, 30, 5775-5790.	1.2	15
174	Projected late 21st century changes to the regional impacts of the El Niño-Southern Oscillation. Climate Dynamics, 2020, 54, 395-412.	1.7	15
175	Surface Ocean Warming Around Australia Driven by Interannual Variability and Longâ€Term Trends in Southern Hemisphere Westerlies. Geophysical Research Letters, 2020, 47, e2019GL086605.	1.5	15
176	Generation of the Amundsen Sea Low by Antarctic Orography. Geophysical Research Letters, 2021, 48, e2020GL091487.	1.5	15
177	Zonal wave 3 pattern in the Southern Hemisphere generated by tropical convection. Nature Geoscience, 2021, 14, 732-738.	5.4	15
178	A Region of Enhanced Northward Antarctic Intermediate Water Transport in a Coupled Climate Model. Journal of Physical Oceanography, 2003, 33, 1528-1535.	0.7	15
179	Antarctic Bottom Water Variability in a Coupled Climate Model. Journal of Physical Oceanography, 2008, 38, 1870-1893.	0.7	14
180	On the Persistence of Cold-Season SST Anomalies Associated with the Annular Modes. Journal of Climate, 2011, 24, 2500-2515.	1.2	14

#	Article	IF	CITATIONS
181	Predictability of the recent slowdown and subsequent recovery of largeâ€scale surface warming using statistical methods. Geophysical Research Letters, 2016, 43, 3459-3467.	1.5	14
182	Distinctive role of ocean advection anomalies in the development of the extreme 2015–16 El Niño. Climate Dynamics, 2018, 51, 2191-2208.	1.7	14
183	Constraining future greenhouse gas emissions by a cumulative target. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16539-16540.	3.3	13
184	Interhemispheric asymmetry in transient global warming: The role of Drake Passage. Geophysical Research Letters, 2013, 40, 1587-1593.	1.5	13
185	The Role of the New Zealand Plateau in the Tasman Sea Circulation and Separation of the East Australian Current. Journal of Geophysical Research: Oceans, 2018, 123, 1457-1470.	1.0	13
186	The Geography of Numerical Mixing in a Suite of Global Ocean Models. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002333.	1.3	13
187	Evaluation of Interior Circulation in a High-Resolution Global Ocean Model. Part II: Southern Hemisphere Intermediate, Mode, and Thermocline Waters. Journal of Physical Oceanography, 2007, 37, 2612-2636.	0.7	12
188	Global and Regional Climate Response to Late Twentieth-Century Warming over the Indian Ocean. Journal of Climate, 2010, 23, 1660-1674.	1.2	12
189	The 1970's shift in ENSO dynamics: A linear inverse model perspective. Geophysical Research Letters, 2013, 40, 1612-1617.	1.5	12
190	Obliquityâ€driven expansion of North Atlantic sea ice during the last glacial. Geophysical Research Letters, 2015, 42, 10,382.	1.5	12
191	Prediction of the fate of radioactive material in the South Pacific Ocean using a global high-resolution ocean model. Journal of Environmental Radioactivity, 2003, 65, 329-355.	0.9	11
192	Atmospheric Circulation Associated with Anomalous Variations in North Pacific Wintertime Blocking. Monthly Weather Review, 2004, 132, 1049-1064.	0.5	11
193	Estimating ensemble size requirements of AGCM simulations. Meteorology and Atmospheric Physics, 2008, 100, 23-36.	0.9	11
194	Teleconnections associated with the intensification of the Australian monsoon during El Niño Modoki events. IOP Conference Series: Earth and Environmental Science, 2010, 11, 012031.	0.2	11
195	A dynamic, embedded Lagrangian model for ocean climate models, Part II: Idealised overflow tests. Ocean Modelling, 2012, 59-60, 60-76.	1.0	11
196	Influence of Oceanic Intraseasonal Kelvin Waves on Eastern Pacific Hurricane Activity. Journal of Climate, 2016, 29, 7941-7955.	1.2	11
197	Influence of tropical wind on global temperature from months to decades. Climate Dynamics, 2016, 47, 2193-2203.	1.7	11
198	Along‣lope Variability of Cross‣lope Eddy Transport in East Antarctica. Geophysical Research Letters, 2019, 46, 8224-8233.	1.5	11

#	Article	IF	CITATIONS
199	Seasonal and Interannual Variability of the Subtropical Front in the New Zealand Region. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016412.	1.0	11
200	Key Role of Diabatic Processes in Regulating Warm Water Volume Variability over ENSO Events. Journal of Climate, 2020, 33, 9945-9964.	1.2	11
201	The Control of Polar Haloclines by Along-Isopycnal Diffusion in Climate Models. Journal of Climate, 2009, 22, 486-498.	1.2	10
202	Analysis of the Southward Wind Shift of ENSO in CMIP5 Models. Journal of Climate, 2017, 30, 2415-2435.	1.2	10
203	Late 20th Century Indian Ocean Heat Content Gain Masked by Wind Forcing. Geophysical Research Letters, 2020, 47, e2020GL088692.	1.5	10
204	Seasonal and Interannual Variability of the Weddell Gyre From a Highâ€Resolution Global Oceanâ€Sea Ice Simulation During 1958–2018. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017662.	1.0	10
205	Indonesian Throughflow Variability and Linkage to ENSO and IOD in an Ensemble of CMIP5 Models. Journal of Climate, 2022, 35, 3161-3178.	1.2	10
206	Climatology, Seasonality, and Trends of Spatially Coherent Ocean Eddies. Journal of Geophysical Research: Oceans, 2022, 127, .	1.0	10
207	Atmospheric Moisture Transport Moderates Climatic Response to the Opening of Drake Passage. Journal of Climate, 2009, 22, 2483-2493.	1.2	9
208	Mechanisms Maintaining Southern Ocean Meridional Heat Transport under Projected Wind Forcing. Journal of Physical Oceanography, 2012, 42, 1923-1931.	0.7	9
209	A dynamic, embedded Lagrangian model for ocean climate models. Part I: Theory and implementation. Ocean Modelling, 2012, 59-60, 41-59.	1.0	9
210	Using Eulerian and Lagrangian Approaches to Investigate Wind-Driven Changes in the Southern Ocean Abyssal Circulation. Journal of Physical Oceanography, 2013, 44, 662-675.	0.7	9
211	The Response of the Indian Ocean Dipole Asymmetry to Anthropogenic Aerosols and Greenhouse Gases. Journal of Climate, 2015, 28, 2564-2583.	1.2	9
212	Modes of hurricane activity variability in the eastern Pacific: Implications for the 2016 season. Geophysical Research Letters, 2016, 43, 11,358.	1.5	9
213	The Origin and Fate of Subantarctic Mode Water in the Southern Ocean. Journal of Physical Oceanography, 2021, , .	0.7	9
214	Stability of Antarctic Bottom Water Formation to Freshwater Fluxes and Implications for Global Climate. Journal of Climate, 2008, 21, 3310-3326.	1.2	9
215	Residence Time and Transformation of Warm Circumpolar Deep Water on the Antarctic Continental Shelf. Geophysical Research Letters, 2021, 48, e2021GL096092.	1.5	9
216	Water-mass formation and Sverdrup dynamics; a comparison between climatology and a coupled ocean-atmosphere model. Journal of Marine Systems, 1992, 3, 279-306.	0.9	8

#	Article	IF	CITATIONS
217	Different oceanic features of anthropogenic CO 2 and CFCs. Die Naturwissenschaften, 2002, 89, 399-403.	0.6	8
218	Troposphereâ€ s tratosphere dynamical coupling in the southern high latitudes and its linkage to the Amundsen Sea. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3776-3789.	1.2	8
219	Tropical Indoâ€Pacific Teleconnections to Southern Ocean Mixed Layer Variability. Geophysical Research Letters, 2020, 47, e2020GL088466.	1.5	7
220	On the dynamics of an observed thermal front off central eastern Australia. Journal of Geophysical Research, 2003, 108, .	3.3	6
221	Subduction and Transport in the Indian and Pacific Oceans in a 2 × CO2 Climate. Journal of Climate, 2011, 24, 1821-1838.	1.2	6
222	A New Zonal Wave-3 Index for the Southern Hemisphere. Journal of Climate, 2022, 35, 5137-5149.	1.2	6
223	Twentieth century trends in moisture advection over Australia. Meteorology and Atmospheric Physics, 2008, 100, 243-256.	0.9	5
224	The Impact of Wind Stress Feedback on the Stability of the Atlantic Meridional Overturning Circulation. Journal of Climate, 2011, 24, 1965-1984.	1.2	5
225	Optimal forcing of ENSO either side of the 1970's climate shift and its implications for predictability. Climate Dynamics, 2015, 45, 47-65.	1.7	5
226	Seasonal-to-Interannual Response of Southern Ocean Mixed Layer Depth to the Southern Annular Mode from a Global 1/10° Ocean Model. Journal of Climate, 2019, 32, 6177-6195.	1.2	5
227	Decadal predictability of temperature and precipitation means and extremes in a perfect-model experiment. Climate Dynamics, 2019, 53, 3711-3729.	1.7	5
228	On the multi-century Southern Hemisphere response to changes in atmospheric CO2-concentration in a Global Climate Model. Meteorology and Atmospheric Physics, 2005, 89, 17-36.	0.9	4
229	North Atlantic Deep Water collapse triggered by a Southern Ocean meltwater pulse in a glacial climate state. Geophysical Research Letters, 2008, 35, .	1.5	4
230	Precise Calculations of the Existence of Multiple AMOC Equilibria in Coupled Climate Models. Part II: Transient Behavior. Journal of Climate, 2012, 25, 299-306.	1.2	4
231	Sensitivity of the oceanic carbon reservoir to tropical surface wind stress variations. Geophysical Research Letters, 2013, 40, 2218-2223.	1.5	4
232	The effect of low ancient greenhouse climate temperature gradients on the ocean's overturning circulation. Climate of the Past, 2016, 12, 543-552.	1.3	4
233	A Framework to Determine the Limits of Achievable Skill for Interannual to Decadal Climate Predictions. Journal of Geophysical Research D: Atmospheres, 2019, 124, 2882-2896.	1.2	4
234	Transient Response of the Southern Ocean to Idealized Wind and Thermal Forcing across Different Model Resolutions. Journal of Climate, 2021, 34, 5477-5496.	1.2	4

#	Article	IF	CITATIONS
235	Response of Southern Hemisphere Western Boundary Current Regions to Future Zonally Symmetric and Asymmetric Atmospheric Changes. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017858.	1.0	4
236	On the Stochastic Forcing of Modes of Interannual Southern Ocean Sea Surface Temperature Variability. Journal of Climate, 2005, 18, 3074-3083.	1.2	3
237	Structure and Causes of the Pulsation Mode in the Antarctic Circumpolar Current South of Australia. Journal of Physical Oceanography, 2011, 41, 253-268.	0.7	3
238	Wind-stress feedback amplification of abrupt millennial-scale climate changes. Climate Dynamics, 2013, 40, 983-995.	1.7	3
239	Interhemispheric Asymmetry of Warming in an Eddy-Permitting Coupled Sector Model. Journal of Climate, 2015, 28, 7385-7406.	1.2	3
240	Reply to "Comment on â€~Comparison of Low-Frequency Internal Climate Variability in CMIP5 Models and Observations'― Journal of Climate, 2017, 30, 9773-9782.	1.2	3
241	Reply to "Comments on â€ [~] Diathermal Heat Transport in a Global Ocean Model'― Journal of Physical Oceanography, 2019, 49, 2195-2197.	0.7	3
242	Response of the Southern Ocean Overturning Circulation to Extreme Southern Annular Mode Conditions. Geophysical Research Letters, 2020, 47, e2020GL091103.	1.5	3
243	The Role of Coupled Feedbacks in the Decadal Variability of the Southern Hemisphere Eddyâ€Driven Jet. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035023.	1.2	3
244	Buffered versus non-buffered ocean carbon reservoir variations: Application to the sensitivity of atmospheric pCO ₂ to ocean circulation changes. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	2
245	Interbasin Differences in Ocean Ventilation in Response to Variations in the Southern Annular Mode. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016540.	1.0	2
246	Planetary-wave induced strengthening of the AMOC forced by poleward intensified Southern Hemisphere westerly winds. Journal of Climate, 2021, , 1-45.	1.2	2
247	The Ekman Streamfunction and the Eulerian and Residual Overturning Circulations of the Southern Ocean. Geophysical Research Letters, 2021, 48, e2021GL093438.	1.5	2
248	On the response of Southern Ocean water-masses to atmospheric meridional moisture advection. Geophysical Research Letters, 2003, 30, .	1.5	1
249	Optimal Growth of Antarctic Circumpolar Waves. Journal of Physical Oceanography, 2006, 36, 255-269.	0.7	1
250	Propagation of barotropic Kelvin waves around Antarctica. Ocean Dynamics, 2022, 72, 405-419.	0.9	1
251	The oceans and climate change: Response to Southern Hemisphere forcing. IOP Conference Series: Earth and Environmental Science, 2009, 6, 032010.	0.2	0
252	Revisiting meridional overturing bistability using a minimal set of state variables: stochastic theory. Climate Dynamics, 2014, 43, 1661-1676.	1.7	0