
Eishi Noguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/224836/publications.pdf Version: 2024-02-01

ЕІЕНІ NOCUCHI

#	Article	IF	CITATIONS
1	Fanconi anemia: current insights regarding epidemiology, cancer, and DNA repair. Human Genetics, 2022, 141, 1811-1836.	1.8	35
2	Maf1 limits RNA polymerase III-directed transcription to preserve genomic integrity and extend lifespan. Cell Cycle, 2021, 20, 247-255.	1.3	7
3	FANCD2 limits acetaldehydeâ€induced genomic instability during DNA replication in esophageal keratinocytes. Molecular Oncology, 2021, 15, 3109-3124.	2.1	9
4	Alcohol Metabolism Enriches Squamous Cell Carcinoma Cancer Stem Cells That Survive Oxidative Stress via Autophagy. Biomolecules, 2021, 11, 1479.	1.8	10
5	Maf1â€dependent transcriptional regulation of tRNAs prevents genomic instability and is associated with extended lifespan. Aging Cell, 2020, 19, e13068.	3.0	24
6	Autophagy mitigates ethanol-induced mitochondrial dysfunction and oxidative stress in esophageal keratinocytes. PLoS ONE, 2020, 15, e0239625.	1.1	18
7	Genetic investigation of formaldehyde-induced DNA damage response in Schizosaccharomyces pombe. Current Genetics, 2020, 66, 593-605.	0.8	13
8	Metabolic Regulation of the Senescence Program. Innovation in Aging, 2020, 4, 133-133.	0.0	0
9	Title is missing!. , 2020, 15, e0239625.		Ο
10	Title is missing!. , 2020, 15, e0239625.		0
11	Title is missing!. , 2020, 15, e0239625.		0
12	Title is missing!. , 2020, 15, e0239625.		0
13	The NuA4 acetyltransferase and histone H4 acetylation promote replication recovery after topoisomerase I-poisoning. Epigenetics and Chromatin, 2019, 12, 24.	1.8	9
14	Genetic controls of DNA damage avoidance in response to acetaldehyde in fission yeast. Cell Cycle, 2017, 16, 45-58.	1.3	22
15	RegulationÂofÂDNAÂReplicationÂthroughÂNatural ImpedimentsÂinÂtheÂEukaryoticÂGenome. Genes, 2017, 8,	98.0	41
16	DNA Replication Controls Volume 1. , 2017, , .		0
17	Timeless protection of telomeres. Current Genetics, 2016, 62, 725-730.	0.8	21
18	Swi1Timeless Prevents Repeat Instability at Fission Yeast Telomeres. PLoS Genetics, 2016, 12, e1005943.	1.5	18

Еізні Noguchi

#	Article	IF	CITATIONS
19	ALDH2 modulates autophagy flux to regulate acetaldehyde-mediated toxicity thresholds. American Journal of Cancer Research, 2016, 6, 781-96.	1.4	12
20	381 ALDH2 and Autophagy May Cooperate to Alleviate Acetaldehyde-Mediated DNA Damage and Cytotoxicity in Fission Yeast and Esophageal Epithelial Cells. Gastroenterology, 2015, 148, S-79.	0.6	0
21	Chromatin Immunoprecipitation to Detect DNA Replication and Repair Factors. Methods in Molecular Biology, 2015, 1300, 169-186.	0.4	6
22	Swi1 Timeless Prevents Repeat Instability at Fission Yeast Telomeres. FASEB Journal, 2015, 29, 560.8.	0.2	0
23	Cell Cycle Control. Methods in Molecular Biology, 2014, , .	0.4	9
24	Introductory Review of Computational Cell Cycle Modeling. Methods in Molecular Biology, 2014, 1170, 267-275.	0.4	5
25	Linking Chromosome Duplication and Segregation via Sister Chromatid Cohesion. Methods in Molecular Biology, 2014, 1170, 75-98.	0.4	7
26	Chromatin Immunoprecipitation to Investigate Origin Association of Replication Factors in Mammalian Cells. Methods in Molecular Biology, 2014, 1170, 539-547.	0.4	2
27	Roles of ChlR1 DNA helicase in replication recovery from DNA damage. Experimental Cell Research, 2013, 319, 2244-2253.	1.2	29
28	Coordinated Degradation of Replisome Components Ensures Genome Stability upon Replication Stress in the Absence of the Replication Fork Protection Complex. PLoS Genetics, 2013, 9, e1003213.	1.5	29
29	Proteasome-dependent degradation of replisome components regulates faithful DNA replication. Cell Cycle, 2013, 12, 2564-2569.	1.3	12
30	PP2A ^{Cdc55/B55} , a possible therapeutic target in cyclin D1-dependent cancers. Cell Cycle, 2013, 12, 1484-1484.	1.3	0
31	New vectors for epitope tagging and gene disruption in <i>Schizosaccharomyces pombe</i> . BioTechniques, 2013, 55, 257-263.	0.8	16
32	The Replication Fork: Understanding the Eukaryotic Replication Machinery and the Challenges to Genome Duplication. Genes, 2013, 4, 1-32.	1.0	72
33	Coordinated Degradation of Replisome Components Ensures Genome Stability Upon Replication Stress. FASEB Journal, 2013, 27, 968.4.	0.2	0
34	The Double-Bromodomain Proteins Bdf1 and Bdf2 Modulate Chromatin Structure to Regulate S-Phase Stress Response in <i>Schizosaccharomyces pombe</i> . Genetics, 2012, 190, 487-500.	1.2	24
35	Local and global functions of Timeless and Tipin in replication fork protection. Cell Cycle, 2012, 11, 3945-3955.	1.3	77
36	Timeless preserves telomere length by promoting efficient DNA replication through human telomeres. Cell Cycle, 2012, 11, 2337-2347.	1.3	61

Еізні Noguchi

#	Article	lF	CITATIONS
37	Epigenetic Regulation of Condensin-Mediated Genome Organization during the Cell Cycle and upon DNA Damage through Histone H3 Lysine 56 Acetylation. Molecular Cell, 2012, 48, 532-546.	4.5	71
38	Swi1 Associates with Chromatin through the DDT Domain and Recruits Swi3 to Preserve Genomic Integrity. PLoS ONE, 2012, 7, e43988.	1.1	13
39	Division of labor of the replication fork protection complex subunits in sister chromatid cohesion and Chk1 activation. Cell Cycle, 2011, 10, 2059-2058.	1.3	4
40	Checkpoint-Dependent and -Independent Roles of Swi3 in Replication Fork Recovery and Sister Chromatid Cohesion in Fission Yeast. PLoS ONE, 2010, 5, e13379.	1.1	14
41	Human Timeless and Tipin stabilize replication forks and facilitate sister-chromatid cohesion. Journal of Cell Science, 2010, 123, 660-670.	1.2	130
42	Interactions between Swi1‧wi3, Mrc1 and S phase kinase, Hsk1 may regulate cellular responses to stalled replication forks in fission yeast. Genes To Cells, 2009, 14, 669-682.	0.5	50
43	Differential arrival of leading and lagging strand DNA polymerases at fission yeast telomeres. EMBO Journal, 2009, 28, 810-820.	3.5	71
44	Chromatin Immunoprecipitation of Replication Factors Moving with the Replication Fork. Methods in Molecular Biology, 2009, 521, 191-202.	0.4	2
45	Assays Used to Study the DNA Replication Checkpoint in Fission Yeast. Methods in Molecular Biology, 2009, 521, 493-507.	0.4	17
46	A vector system for genomic FLAG epitopeâ€ŧagging in <i>Schizosaccharomyces pombe</i> . Biotechnology Journal, 2008, 3, 1280-1285.	1.8	39
47	RFC ^{Ctf18} and the Swi1-Swi3 Complex Function in Separate and Redundant Pathways Required for the Stabilization of Replication Forks to Facilitate Sister Chromatid Cohesion in <i>Schizosaccharomyces pombe</i> . Molecular Biology of the Cell, 2008, 19, 595-607.	0.9	64
48	Sap1 Promotes the Association of the Replication Fork Protection Complex With Chromatin and Is Involved in the Replication Checkpoint in Schizosaccharomyces pombe. Genetics, 2007, 175, 553-566.	1.2	33
49	Rad22Rad52-dependent Repair of Ribosomal DNA Repeats Cleaved by Slx1-Slx4 Endonuclease. Molecular Biology of the Cell, 2006, 17, 2081-2090.	0.9	34
50	Hsk1-Dfp1/Him1, the Cdc7-Dbf4 Kinase in Schizosaccharomyces pombe, Associates with Swi1, a Component of the Replication Fork Protection Complex. Journal of Biological Chemistry, 2005, 280, 42536-42542.	1.6	56
51	Swi1 and Swi3 Are Components of a Replication Fork Protection Complex in Fission Yeast. Molecular and Cellular Biology, 2004, 24, 8342-8355.	1.1	194
52	A Hamster Temperature-Sensitive Alanyl-tRNA Synthetase Mutant Causes Degradation of Cell-Cycle Related Proteins and Apoptosis. Journal of Biochemistry, 2004, 135, 7-16.	0.9	6
53	The Endogenous Mus81-Eme1 Complex Resolves Holliday Junctions by a Nick and Counternick Mechanism. Molecular Cell, 2003, 12, 747-759.	4.5	166
54	Swi1 Prevents Replication Fork Collapse and Controls Checkpoint Kinase Cds1. Molecular and Cellular Biology, 2003, 23, 7861-7874.	1.1	157

Еізні Noguchi

#	Article	IF	CITATIONS
55	Replication Checkpoint Protein Mrc1 Is Regulated by Rad3 and Tel1 in Fission Yeast. Molecular and Cellular Biology, 2003, 23, 8395-8403.	1.1	54
56	A Temperature-Sensitive Mutant of the Mammalian RNA Helicase, DEAD-BOX X Isoform, DBX, Defective in the Transition from G1 to S Phase. Journal of Biochemistry, 2003, 134, 71-82.	0.9	33
57	Replication Checkpoint Kinase Cds1 Regulates Recombinational Repair Protein Rad60. Molecular and Cellular Biology, 2003, 23, 5939-5946.	1.1	86
58	CDK Phosphorylation of Drc1 Regulates DNA Replication in Fission Yeast. Current Biology, 2002, 12, 599-605.	1.8	65
59	The <i>Saccharomyces cerevisiae</i> Small GTPase, Gsp1p/Ran, Is Involved in 3′ Processing of 7S-to-5.8S rRNA and in Degradation of the Excised 5′-A0 Fragment of 35S Pre-rRNA, Both of Which Are Carried Out by the Exosome. Genetics, 2001, 158, 613-625.	1.2	35
60	Disruption of the YRB2 Gene Retards Nuclear Protein Export, Causing a Profound Mitotic Delay, and Can Be Rescued by Overexpression of XPO1/CRM1. Journal of Biochemistry, 1999, 125, 574-585.	0.9	41
61	Saccharomyces cerevisiae Putative G Protein, Gtr1p, Which Forms Complexes With Itself and a Novel Protein Designated as Gtr2p, Negatively Regulates the Ran/Gsp1p G Protein Cycle Through Gtr2p. Genetics, 1999, 152, 853-867.	1.2	97
62	Nuclear protein import, but not mRNA export, is defective in all Saccharomyces cerevisiae mutants that produce temperature-sensitive forms of the Ran GTPase homologue Gsp1p. Molecular Genetics and Genomics, 1998, 257, 624-634.	2.4	30
63	Human Dis3p, Which Binds to Either GTP- or GDP-Ran, Complements Saccharomyces cerevisiae dis3. Journal of Biochemistry, 1998, 123, 883-890.	0.9	55
64	Yrb2p, a Nup2p-Related Yeast Protein, Has a Functional Overlap with Rna1p, a Yeast Ran-GTPase-Activating Protein. Molecular and Cellular Biology, 1997, 17, 2235-2246.	1.1	68
65	Dis3, implicated in mitotic control, binds directly to Ran and enhances the GEF activity of RCC1 EMBO Journal, 1996, 15, 5595-5605.	3.5	78
66	Dâ€ŧype cyclin expression is decreased and p21 and p27 CDK inhibitor expression is increased when tsBN462 CCG1/TAF II 250 mutant cells arrest in G1 at the restrictive temperature. Genes To Cells, 1996, 1, 687-705.	0.5	29
67	Minimum essential region of CCG1/TAFII250 required for complementing the temperature-sensitive cell cycle mutants, tsBN462 and ts13 cells, of hamster BHK21 cells. Somatic Cell and Molecular Genetics, 1994, 20, 505-513.	0.7	14
68	The CCG1/TAFII250 gene is mutated in thermosensitive G1 mutants of the BHK21 cell line derived from golden hamster. Gene, 1994, 141, 267-270.	1.0	64
69	Molecular Cloning and Identification of Two Types of Hamster Cyclin-Dependent Kinases: CDK2 and CDK2L. Biochemical and Biophysical Research Communications, 1993, 197, 1524-1529.	1.0	16