Liping Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2248133/publications.pdf

Version: 2024-02-01

77 papers	9,691 citations	94381 37 h-index	69214 77 g-index
83 all docs	83 docs citations	83 times ranked	14178 citing authors

#	Article	IF	CITATIONS
1	Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science, 2018, 359, 1151-1156.	6.0	1,521
2	Enterotypes in the landscape of gut microbial community composition. Nature Microbiology, 2018, 3, 8-16.	5.9	717
3	Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. ISME Journal, 2015, 9, 1-15.	4.4	703
4	The gut microbiota and obesity: from correlation to causality. Nature Reviews Microbiology, 2013, 11, 639-647.	13.6	665
5	Towards standards for human fecal sample processing in metagenomic studies. Nature Biotechnology, 2017, 35, 1069-1076.	9.4	581
6	Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats. Scientific Reports, 2015, 5, 14405.	1.6	499
7	Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut microbiota. Scientific Reports, 2017, 7, 2594.	1.6	400
8	Structural modulation of gut microbiota during alleviation of type 2 diabetes with a Chinese herbal formula. ISME Journal, 2015, 9, 552-562.	4.4	362
9	A phylo-functional core of gut microbiota in healthy young Chinese cohorts across lifestyles, geography and ethnicities. ISME Journal, 2015, 9, 1979-1990.	4.4	339
10	Dietary Modulation of Gut Microbiota Contributes to Alleviation of Both Genetic and Simple Obesity in Children. EBioMedicine, 2015, 2, 968-984.	2.7	306
11	Structural Alteration of Gut Microbiota during the Amelioration of Human Type 2 Diabetes with Hyperlipidemia by Metformin and a Traditional Chinese Herbal Formula: a Multicenter, Randomized, Open Label Clinical Trial. MBio, 2018, 9, .	1.8	258
12	Strain-Specific Anti-inflammatory Properties of Two Akkermansia muciniphila Strains on Chronic Colitis in Mice. Frontiers in Cellular and Infection Microbiology, 2019, 9, 239.	1.8	233
13	Dysbiosis of Gut Microbiota Associated with Clinical Parameters in Polycystic Ovary Syndrome. Frontiers in Microbiology, 2017, 8, 324.	1.5	224
14	Gut Microbial Dysbiosis Is Associated with Altered Hepatic Functions and Serum Metabolites in Chronic Hepatitis B Patients. Frontiers in Microbiology, 2017, 8, 2222.	1.5	172
15	Reporting guidelines for human microbiome research: the STORMS checklist. Nature Medicine, 2021, 27, 1885-1892.	15.2	170
16	Accelerated dysbiosis of gut microbiota during aggravation of DSS-induced colitis by a butyrate-producing bacterium. Scientific Reports, 2016, 6, 27572.	1.6	164
17	Remodelling of the gut microbiota by hyperactive NLRP3 induces regulatory T cells to maintain homeostasis. Nature Communications, 2017, 8, 1896.	5.8	147
18	Predominant gut Lactobacillus murinus strain mediates anti-inflammaging effects in calorie-restricted mice. Microbiome, 2018, 6, 54.	4.9	141

#	Article	IF	Citations
19	Back to the Future of Soil Metagenomics. Frontiers in Microbiology, 2016, 7, 73.	1.5	120
20	A human stool-derived Bilophila wadsworthia strain caused systemic inflammation in specific-pathogen-free mice. Gut Pathogens, 2017, 9, 59.	1.6	120
21	Gender-based differences in host behavior and gut microbiota composition in response to high fat diet and stress in a mouse model. Scientific Reports, 2017, 7, 10776.	1.6	112
22	Integrative Physiology: At the Crossroads of Nutrition, Microbiota, Animal Physiology, and Human Health. Cell Metabolism, 2017, 25, 522-534.	7.2	108
23	Endotoxin Producers Overgrowing in Human Gut Microbiota as the Causative Agents for Nonalcoholic Fatty Liver Disease. MBio, 2020, 11 , .	1.8	96
24	Strain-level dissection of the contribution of the gut microbiome to human metabolic disease. Genome Medicine, 2016, 8, 41.	3.6	86
25	Guild-based analysis for understanding gut microbiome in human health and diseases. Genome Medicine, 2021, 13, 22.	3.6	83
26	The human gut microbiome and health inequities. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	82
27	A Filifactor alocis-centered co-occurrence group associates with periodontitis across different oral habitats. Scientific Reports, 2015, 5, 9053.	1.6	78
28	<i>Desulfovibrio desulfuricans</i> isolates from the gut of a single individual: Structural and biological lipid A characterization. FEBS Letters, 2015, 589, 165-171.	1.3	74
29	Initial gut microbiota structure affects sensitivity to DSS-induced colitis in a mouse model. Science China Life Sciences, 2018, 61, 762-769.	2.3	70
30	Green Tea Polyphenols Modify the Gut Microbiome in <i>db/db</i> Mice as Coâ€Abundance Groups Correlating with the Blood Glucose Lowering Effect. Molecular Nutrition and Food Research, 2019, 63, e1801064.	1.5	69
31	Targeting the Human Genome–Microbiome Axis for Drug Discovery: Inspirations from Global Systems Biology and Traditional Chinese Medicine. Journal of Proteome Research, 2012, 11, 3509-3519.	1.8	57
32	Dietary Tomato Powder Inhibits High-Fat Diet–Promoted Hepatocellular Carcinoma with Alteration of Gut Microbiota in Mice Lacking Carotenoid Cleavage Enzymes. Cancer Prevention Research, 2018, 11, 797-810.	0.7	54
33	Genetically Obese Human Gut Microbiota Induces Liver Steatosis in Germ-Free Mice Fed on Normal Diet. Frontiers in Microbiology, 2018, 9, 1602.	1.5	48
34	Whole-body systems approaches for gut microbiota-targeted, preventive healthcare. Journal of Biotechnology, 2010, 149, 183-190.	1.9	47
35	A More Robust Gut Microbiota in Calorie-Restricted Mice Is Associated with Attenuated Intestinal Injury Caused by the Chemotherapy Drug Cyclophosphamide. MBio, 2019, 10, .	1.8	44
36	The human microbiome encodes resistance to the antidiabetic drug acarbose. Nature, 2021, 600, 110-115.	13.7	44

#	Article	IF	Citations
37	Genomic Microdiversity of <i>Bifidobacterium pseudocatenulatum</i> Underlying Differential Strain-Level Responses to Dietary Carbohydrate Intervention. MBio, 2017, 8, .	1.8	43
38	Fecal menaquinone profiles of overweight adults are associated with gut microbiota composition during a gut microbiota–targeted dietary intervention. American Journal of Clinical Nutrition, 2015, 102, 84-93.	2.2	42
39	The structural alteration of gut microbiota in low-birth-weight mice undergoing accelerated postnatal growth. Scientific Reports, 2016, 6, 27780.	1.6	34
40	Hyperactivation of the NLRP3 inflammasome protects mice against influenza A virus infection via IL- $\hat{1}^2$ mediated neutrophil recruitment. Cytokine, 2019, 120, 115-124.	1.4	34
41	Diminution of the gut resistome after a gut microbiota-targeted dietary intervention in obese children. Scientific Reports, 2016, 6, 24030.	1.6	33
42	Differential responses of gut microbiota to the same prebiotic formula in oligotrophic and eutrophic batch fermentation systems. Scientific Reports, 2015, 5, 13469.	1.6	29
43	Nutritional Modulation of Gut Microbiota Alleviates Severe Gastrointestinal Symptoms in a Patient with Post-Acute COVID-19 Syndrome. MBio, 2022, 13, e0380121.	1.8	29
44	Timing of Calorie Restriction in Mice Impacts Host Metabolic Phenotype with Correlative Changes in Gut Microbiota. MSystems, $2019,4,.$	1.7	28
45	A recombinant adenovirus expressing CFP10, ESAT6, Ag85A and Ag85B of Mycobacterium tuberculosis elicits strong antigen-specific immune responses in mice. Molecular Immunology, 2014, 62, 86-95.	1.0	24
46	A fullerene colloidal suspension stimulates the growth and denitrification ability of wastewater treatment sludge-derived bacteria. Chemosphere, 2014, 108, 411-417.	4.2	24
47	Causality in dietary interventionsâ€"building a case for gut microbiota. Genome Medicine, 2018, 10, 62.	3.6	22
48	Lactobacillus Mucosae Strain Promoted by a High-Fiber Diet in Genetic Obese Child Alleviates Lipid Metabolism and Modifies Gut Microbiota in ApoE-/- Mice on a Western Diet. Microorganisms, 2020, 8, 1225.	1.6	22
49	Prime-boost vaccination with Bacillus Calmette Guerin and a recombinant adenovirus co-expressing CFP10, ESAT6, Ag85A and Ag85B of Mycobacterium tuberculosis induces robust antigen-specific immune responses in mice. Molecular Medicine Reports, 2015, 12, 3073-3080.	1.1	21
50	Why we need to curb the emerging worldwide epidemic of nonalcoholic fatty liver disease. Nature Metabolism, 2019, 1, 1027-1029.	5.1	21
51	Time-resolved analysis of a denitrifying bacterial community revealed a core microbiome responsible for the anaerobic degradation of quinoline. Scientific Reports, 2017, 7, 14778.	1.6	20
52	Regulated Inflammation and Lipid Metabolism in Colon mRNA Expressions of Obese Germfree Mice Responding to Enterobacter cloacae B29 Combined with the High Fat Diet. Frontiers in Microbiology, 2016, 7, 1786.	1.5	18
53	Ketogenic Diets Induced Glucose Intolerance and Lipid Accumulation in Mice with Alterations in Gut Microbiota and Metabolites. MBio, 2021, 12, .	1.8	18
54	Microstructure-modified products from stone-milled wheat bran powder improve glycemic response and sustain colonic fermentation. International Journal of Biological Macromolecules, 2020, 153, 1193-1201.	3.6	17

#	Article	IF	CITATIONS
55	Active phase prebiotic feeding alters gut microbiota, induces weight-independent alleviation of hepatic steatosis and serum cholesterol in high-fat diet-fed mice. Computational and Structural Biotechnology Journal, 2021, 19, 448-458.	1.9	16
56	High-Fiber Diet or Combined With Acarbose Alleviates Heterogeneous Phenotypes of Polycystic Ovary Syndrome by Regulating Gut Microbiota. Frontiers in Endocrinology, 2021, 12, 806331.	1.5	14
57	Non-synchronous Structural and Functional Dynamics During the Coalescence of Two Distinct Soil Bacterial Communities. Frontiers in Microbiology, 2019, 10, 1125.	1.5	13
58	Quantification of Human Oral and Fecal Streptococcus parasanguinis by Use of Quantitative Real-Time PCR Targeting the groEL Gene. Frontiers in Microbiology, 2019, 10, 2910.	1.5	12
59	Demonstration of causality: back to cultures. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 97-98.	8.2	11
60	Functional drink powders from vertical-stone-milled oat and highland barley with high dietary-fiber levels decrease the postprandial glycemic response. Journal of Functional Foods, 2021, 83, 104548.	1.6	11
61	Gut Bacteria Shared by Children and Their Mothers Associate with Developmental Level and Social Deficits in Autism Spectrum Disorder. MSphere, 2020, 5, .	1.3	11
62	The Effects of Green Tea on Diabetes and Gut Microbiome in db/db Mice: Studies with Tea Extracts vs. Tea Powder. Nutrients, 2021, 13, 3155.	1.7	10
63	A transmissible $\hat{I}^{3}\hat{I}$ intraepithelial lymphocyte hyperproliferative phenotype is associated with the intestinal microbiota and confers protection against acute infection. Mucosal Immunology, 2022, 15, 772-782.	2.7	10
64	Microbiome: from community metabolism to host diseases. Science China Life Sciences, 2018, 61, 741-743.	2.3	9
65	miRNA-Gene Regulatory Network in Gnotobiotic Mice Stimulated by Dysbiotic Gut Microbiota Transplanted From a Genetically Obese Child. Frontiers in Microbiology, 2019, 10, 1517.	1.5	8
66	Gut Microbial SNPs Induced by High-Fiber Diet Dominate Nutrition Metabolism and Environmental Adaption of Faecalibacterium prausnitzii in Obese Children. Frontiers in Microbiology, 2021, 12, 683714.	1.5	8
67	Gut Microbiota and Immune Modulatory Properties of Human Breast Milk Streptococcus salivarius and S. parasanguinis Strains. Frontiers in Nutrition, 2022, 9, 798403.	1.6	8
68	Suppressed inflammation in obese children induced by a high-fiber diet is associated with the attenuation of gut microbial virulence factor genes. Virulence, 2021, 12, 1754-1770.	1.8	6
69	Elemental iron modifies the redox environment of the gastrointestinal tract: A novel therapeutic target and test for metabolic syndrome. Free Radical Biology and Medicine, 2021, 168, 203-213.	1.3	5
70	Gut Microbiota and Phenotypic Changes Induced by Ablation of Liver- and Intestinal-Type Fatty Acid-Binding Proteins. Nutrients, 2022, 14, 1762.	1.7	5
71	Experimental investigation of integrated air purifying technology for bioaerosol removal and inactivation in central air-conditioning system. Science Bulletin, 2004, 49, 306-310.	1.7	4
72	Variability in the Response of Bacterial Community Assembly to Environmental Selection and Biotic Factors Depends on the Immigrated Bacteria, as Revealed by a Soil Microcosm Experiment. MSystems, 2019, 4, .	1.7	4

#	Article	IF	CITATIONS
73	Meta-analysis Reveals Potential Influence of Oxidative Stress on the Airway Microbiomes of Cystic Fibrosis Patients. Genomics, Proteomics and Bioinformatics, 2019, 17, 590-602.	3.0	4
74	Daily Exposure to a Cranberry Polyphenol Oral Rinse Alters the Oral Microbiome but Not Taste Perception in PROP Taster Status Classified Individuals. Nutrients, 2022, 14, 1492.	1.7	4
75	Grand Challenges in Understanding Gut Microbes. Frontiers in Microbiology, 2021, 12, 752829.	1.5	3
76	Metagenome-Scale Metabolic Network Suggests Folate Produced by Bifidobacterium longum Might Contribute to High-Fiber-Diet-Induced Weight Loss in a Prader–Willi Syndrome Child. Microorganisms, 2021, 9, 2493.	1.6	1
77	Gastrointestinal Microbiology in the Normal Host. , 2019, , 362-362.		0