
Dirk H Ortgies

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2247648/publications.pdf Version: 2024-02-01

DIDK H ODTCIES

#	Article	IF	CITATIONS
1	Lanthanide doped nanoheaters with reliable and absolute temperature feedback. Physica B: Condensed Matter, 2022, 631, 413652.	1.3	10
2	Bismuth Selenide Nanostructured Clusters as Optical Coherence Tomography Contrast Agents: Beyond Gold-Based Particles. ACS Photonics, 2022, 9, 559-566.	3.2	4
3	Optical detection of atherosclerosis at molecular level by optical coherence tomography: An in vitro study. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 43, 102556.	1.7	2
4	Nanoparticles for In Vivo Lifetime Multiplexed Imaging. Methods in Molecular Biology, 2021, 2350, 239-251.	0.4	1
5	Molecular Imaging of Infarcted Heart by Biofunctionalized Gold Nanoshells. Advanced Healthcare Materials, 2021, 10, e2002186.	3.9	6
6	In Vivo Nearâ€Infrared Imaging Using Ternary Selenide Semiconductor Nanoparticles with an Uncommon Crystal Structure. Small, 2021, 17, e2103505.	5.2	6
7	Autofluorescence-Free <i>In Vivo</i> Imaging Using Polymer-Stabilized Nd ³⁺ -Doped YAG Nanocrystals. ACS Applied Materials & Interfaces, 2020, 12, 51273-51284.	4.0	15
8	The role of tissue fluorescence in <i>in vivo</i> optical bioimaging. Journal of Applied Physics, 2020, 128, .	1.1	23
9	Instantaneous In Vivo Imaging of Acute Myocardial Infarct by NIRâ€II Luminescent Nanodots. Small, 2020, 16, e1907171.	5.2	25
10	Near Infrared-Emitting Bioprobes for Low-Autofluorescence Imaging Techniques. , 2020, , 199-229.		1
11	Nanothermometers: Remote Sensors for Temperature Mapping at the Nanoscale. , 2020, , 24-1-24-16.		0
12	Magnetic Nanoplatelets for High Contrast Cardiovascular Imaging by Magnetically Modulated Optical Coherence Tomography. ChemPhotoChem, 2019, 3, 503-503.	1.5	0
13	Perspectives for Ag ₂ S NIR-II nanoparticles in biomedicine: from imaging to multifunctionality. Nanoscale, 2019, 11, 19251-19264.	2.8	69
14	Infrared fluorescence imaging of infarcted hearts with Ag2S nanodots. Nano Research, 2019, 12, 749-757.	5.8	35
15	Magnetic Nanoplatelets for High Contrast Cardiovascular Imaging by Magnetically Modulated Optical Coherence Tomography. ChemPhotoChem, 2019, 3, 529-539.	1.5	16
16	Optomagnetic Nanoplatforms for In Situ Controlled Hyperthermia. Advanced Functional Materials, 2018, 28, 1704434.	7.8	59
17	Lifetime-Encoded Infrared-Emitting Nanoparticles for <i>in Vivo</i> Multiplexed Imaging. ACS Nano, 2018, 12, 4362-4368.	7.3	138
18	Gold nanoshells: Contrast agents for cell imaging by cardiovascular optical coherence tomography. Nano Research, 2018, 11, 676-685.	5.8	38

DIRK H ORTGIES

#	Article	IF	CITATIONS
19	Core–shell rare-earth-doped nanostructures in biomedicine. Nanoscale, 2018, 10, 12935-12956.	2.8	63
20	Rare-earth-doped fluoride nanoparticles with engineered long luminescence lifetime for time-gated <i>in vivo</i> optical imaging in the second biological window. Nanoscale, 2018, 10, 17771-17780.	2.8	87
21	Optical Nanoparticles for Cardiovascular Imaging. Advanced Optical Materials, 2018, 6, 1800626.	3.6	27
22	Quantum Dots Emitting in the Third Biological Window as Bimodal Contrast Agents for Cardiovascular Imaging. Advanced Functional Materials, 2017, 27, 1703276.	7.8	29
23	Overcoming Autofluorescence: Longâ€Lifetime Infrared Nanoparticles for Timeâ€Gated In Vivo Imaging. Advanced Materials, 2016, 28, 10188-10193.	11.1	108
24	Subtissue Imaging and Thermal Monitoring of Gold Nanorods through Joined Encapsulation with Ndâ€Doped Infraredâ€Emitting Nanoparticles. Small, 2016, 12, 5394-5400.	5.2	37
25	Desulfination as an Emerging StratÂegy in Palladiumâ€Catalyzed C–C Coupling Reactions. European Journal of Organic Chemistry, 2016, 2016, 408-425.	1.2	80
26	In Vivo Deep Tissue Fluorescence and Magnetic Imaging Employing Hybrid Nanostructures. ACS Applied Materials & Interfaces, 2016, 8, 1406-1414.	4.0	52
27	Hybrid Nanostructures for High‣ensitivity Luminescence Nanothermometry in the Second Biological Window. Advanced Materials, 2015, 27, 4781-4787.	11.1	174
28	Enhancing Optical Forces on Fluorescent Up onverting Nanoparticles by Surface Charge Tailoring. Small, 2015, 11, 1555-1561.	5.2	21
29	1.3 μm emitting SrF2:Nd3+ nanoparticles for high contrast in vivo imaging in the second biological window. Nano Research, 2015, 8, 649-665.	5.8	185
30	Palladium and TEMPO as Co atalysts in a Desulfinative Homocoupling Reaction. European Journal of Organic Chemistry, 2014, 2014, 3917-3922.	1.2	22
31	Scope of the Desulfinylative Palladium-Catalyzed Cross-Coupling of Aryl Sulfinates with Aryl Bromides. Synthesis, 2013, 45, 694-702.	1.2	34
32	A Ligand-Free Palladium-Catalyzed Cross-Coupling of Aryl Sulfinates with Aryl Bromides. Synlett, 2013, 24, 1715-1721.	1.0	14