Andrey M Mazarati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2247599/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epilepsy and brain inflammation. Experimental Neurology, 2013, 244, 11-21.	2.0	466
2	Patterns of Status Epilepticus-Induced Neuronal Injury during Development and Long-Term Consequences. Journal of Neuroscience, 1998, 18, 8382-8393.	1.7	389
3	Time-dependent decrease in the effectiveness of antiepileptic drugs during the course of self-sustaining status epilepticus. Brain Research, 1998, 814, 179-185.	1.1	227
4	Modulation of Hippocampal Excitability and Seizures by Galanin. Journal of Neuroscience, 2000, 20, 6276-6281.	1.7	206
5	Galanin Modulation of Seizures and Seizure Modulation of Hippocampal Galanin in Animal Models of Status Epilepticus. Journal of Neuroscience, 1998, 18, 10070-10077.	1.7	172
6	Depression after status epilepticus: behavioural and biochemical deficits and effects of fluoxetine. Brain, 2008, 131, 2071-2083.	3.7	170
7	High-mobility group box-1 impairs memory in mice through both toll-like receptor 4 and Receptor for Advanced Glycation End Products. Experimental Neurology, 2011, 232, 143-148.	2.0	159
8	N-methyl-d-asparate receptor antagonists abolish the maintenance phase of self-sustaining status epilepticus in rat. Neuroscience Letters, 1999, 265, 187-190.	1.0	149
9	Galmic, a nonpeptide galanin receptor agonist, affects behaviors in seizure, pain, and forced-swim tests. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10470-10475.	3.3	131
10	Epileptogenesis after status epilepticus reflects age- and model-dependent plasticity. Annals of Neurology, 2000, 48, 580-589.	2.8	130
11	Elevated plasma corticosterone level and depressive behavior in experimental temporal lobe epilepsy. Neurobiology of Disease, 2009, 34, 457-461.	2.1	130
12	Inflammation induced by LPS enhances epileptogenesis in immature rat and may be partially reversed by IL1RA. Epilepsia, 2010, 51, 34-38.	2.6	128
13	Anticonvulsant activity of a nonpeptide galanin receptor agonist. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7136-7141.	3.3	125
14	Galanin type 2 receptors regulate neuronal survival, susceptibility to seizures and seizure-induced neurogenesis in the dentate gyrus. European Journal of Neuroscience, 2004, 19, 3235-3244.	1.2	105
15	Self-sustaining status epilepticus after brief electrical stimulation of the perforant path. Brain Research, 1998, 801, 251-253.	1.1	104
16	Anticonvulsant effects of levetiracetam and levetiracetam–diazepam combinations in experimental status epilepticus. Epilepsy Research, 2004, 58, 167-174.	0.8	100
17	Comorbidity between epilepsy and depression: Role of hippocampal interleukin-1β. Neurobiology of Disease, 2010, 37, 461-467.	2.1	99
18	Regulation of Kindling Epileptogenesis by Hippocampal Galanin Type 1 and Type 2 Receptors: The Effects of Subtype-Selective Agonists and the Role of G-Protein-Mediated Signaling. Journal of Pharmacology and Experimental Therapeutics, 2006, 318, 700-708.	1.3	88

ANDREY M MAZARATI

#	Article	IF	CITATIONS
19	Biomarkers of Epileptogenesis: Psychiatric Comorbidities (?). Neurotherapeutics, 2014, 11, 358-372.	2.1	82
20	Kindling epileptogenesis in immature rats leads to persistent depressive behavior. Epilepsy and Behavior, 2007, 10, 377-383.	0.9	81
21	Interleukin-1beta Causes Fluoxetine Resistance in an Animal Model of Epilepsy-Associated Depression. Neurotherapeutics, 2012, 9, 477-485.	2.1	80
22	Inflammation Exacerbates Seizureâ€induced Injury in the Immature Brain. Epilepsia, 2007, 48, 27-34.	2.6	79
23	Comorbidity between epilepsy and depression: Experimental evidence for the involvement of serotonergic, glucocorticoid, and neuroinflammatory mechanisms. Epilepsia, 2010, 51, 110-114.	2.6	79
24	Maternal immune activation promotes hippocampal kindling epileptogenesis in mice. Annals of Neurology, 2013, 74, 11-19.	2.8	79
25	Inflammation enhances epileptogenesis in the developing rat brain. Neurobiology of Disease, 2010, 40, 303-310.	2.1	78
26	Anticonvulsive effects of galanin administered into the central nervous system upon the picrotoxin-kindled seizure syndrome in rats. Brain Research, 1992, 589, 164-166.	1.1	77
27	Galanin and galanin receptors in epilepsy. Neuropeptides, 2004, 38, 331-343.	0.9	77
28	Bumetanide inhibits rapid kindling in neonatal rats. Epilepsia, 2009, 50, 2117-2122.	2.6	77
29	Neurobehavioral comorbidities of epilepsy: Role of inflammation. Epilepsia, 2017, 58, 48-56.	2.6	77
30	Anticonvulsant effects of four neuropeptides in the rat hippocampus during self-sustaining status epilepticus. Neuroscience Letters, 2002, 331, 123-127.	1.0	75
31	Neuroprotective and antiepileptogenic effects of combination of anti-inflammatory drugs in the immature brain. Journal of Neuroinflammation, 2013, 10, 30.	3.1	74
32	Facilitation of kindling epileptogenesis by chronic stress may be mediated by intestinal microbiome. Epilepsia Open, 2018, 3, 290-294.	1.3	66
33	Seizure-induced neuronal death in the immature brain. Progress in Brain Research, 2002, 135, 335-353.	0.9	63
34	In vivo interaction between serotonin and galanin receptors types 1 and 2 in the dorsal raphe: implication for limbic seizures. Journal of Neurochemistry, 2005, 95, 1495-1503.	2.1	56
35	Regulation of limbic status epilepticus by hippocampal galanin type 1 and type 2 receptors. Neuropeptides, 2005, 39, 277-280.	0.9	52
36	Distribution and differential regulation of galanin receptor subtypes in rat brain: effects of seizure activity. Neuropeptides, 2005, 39, 147-152.	0.9	51

#	Article	IF	CITATIONS
37	Galanin – 25 years with a multitalented neuropeptide. Cellular and Molecular Life Sciences, 2008, 65, 1864-1871.	2.4	51
38	Behavioral impairments in rats with chronic epilepsy suggest comorbidity between epilepsy and attention deficit/hyperactivity disorder. Epilepsy and Behavior, 2014, 31, 267-275.	0.9	51
39	Self-Sustaining Status Epilepticus: A Condition Maintained by Potentiation of Glutamate Receptors and by Plastic Changes in Substance P and Other Peptide Neuromodulators. Epilepsia, 2000, 41, S134-S143.	2.6	50
40	Epileptogenesis After Self-Sustaining Status Epilepticus. Epilepsia, 2002, 43, 74-80.	2.6	49
41	Anticonvulsant effects of the selective melatonin receptor agonist ramelteon. Epilepsy and Behavior, 2009, 16, 52-57.	0.9	49
42	Short-Term Plasticity of Hippocampal Neuropeptides and Neuronal Circuitry in Experimental Status Epilepticus. Epilepsia, 2002, 43, 20-29.	2.6	47
43	Chronic epilepsy with damage restricted to the hippocampus: possible mechanisms. Epilepsy Research, 1996, 26, 255-265.	0.8	45
44	Finding a better drug for epilepsy: Antiinflammatory targets. Epilepsia, 2012, 53, 1113-1118.	2.6	44
45	Bidirectional relations among common psychiatric and neurologic comorbidities and epilepsy: Do they have an impact on the course of the seizure disorder?. Epilepsia Open, 2018, 3, 210-219.	1.3	41
46	Antiepileptogenic and antiictogenic effects of retigabine under conditions of rapid kindling: An ontogenic study. Epilepsia, 2008, 49, 1777-1786.	2.6	39
47	Plasticity of Presynaptic and Postsynaptic Serotonin 1A Receptors in an Animal Model of Epilepsy-Associated Depression. Neuropsychopharmacology, 2011, 36, 1305-1316.	2.8	39
48	WONOEP appraisal: Biomarkers of epilepsyâ€associated comorbidities. Epilepsia, 2017, 58, 331-342.	2.6	39
49	Novel Animal Models of Pediatric Epilepsy. Neurotherapeutics, 2012, 9, 245-261.	2.1	37
50	Anticonvulsant and antiepileptogenic effects of fluorofelbamate in experimental status epilepticus. Seizure: the Journal of the British Epilepsy Association, 2002, 11, 423-430.	0.9	34
51	A companion to the preclinical common data elements on neurobehavioral comorbidities of epilepsy: a report of the <scp>TASK</scp> 3 behavior working group of the <scp>ILAE</scp> / <scp>AES</scp> Joint Translational Task Force. Epilepsia Open, 2018, 3, 24-52.	1.3	34
52	Effects of selective serotonin and norepinephrine reuptake inhibitors on depressive―and impulsiveâ€like behaviors and on monoamine transmission in experimental temporal lobe epilepsy. Epilepsia, 2016, 57, 506-515.	2.6	33
53	Common Mechanisms Underlying Epileptogenesis and the Comorbidities of Epilepsy. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a022798.	2.9	33
54	Self-sustaining status epilepticus after a brief electrical stimulation of the perforant path: a 2-deoxyglucose study. Brain Research, 1999, 838, 110-118.	1.1	31

ANDREY M MAZARATI

#	Article	IF	CITATIONS
55	Multiple interaction sites of galnon trigger its biological effects. Neuropeptides, 2005, 39, 547-558.	0.9	29
56	Evaluation of developmentâ€specific targets for antiepileptogenic therapy using rapid kindling. Epilepsia, 2010, 51, 39-42.	2.6	28
57	Felbamate in Experimental Model of Status Epilepticus. Epilepsia, 2000, 41, 123-127.	2.6	24
58	Epileptogenesis During Development: Injury, Circuit Recruitment, and Plasticity. Epilepsia, 2002, 43, 47-53.	2.6	23
59	Disruption of intestinal barrier and endotoxemia after traumatic brain injury: Implications for postâ€ŧraumatic epilepsy. Epilepsia, 2021, 62, 1472-1481.	2.6	23
60	Age-dependent Effects of Topiramate on the Acquisition and the Retention of Rapid Kindling. Epilepsia, 2007, 48, 765-773.	2.6	22
61	Kindling epileptogenesis and panic-like behavior: Their bidirectional connection and contribution to epilepsy-associated depression. Epilepsy and Behavior, 2017, 77, 33-38.	0.9	20
62	Sex-Specific Life Course Changes in the Neuro-Metabolic Phenotype of Glut3 Null Heterozygous Mice: Ketogenic Diet Ameliorates Electroencephalographic Seizures and Improves Sociability. Endocrinology, 2017, 158, 936-949.	1.4	20
63	Pro-epileptogenic effects of viral-like inflammation in both mature and immature brains. Journal of Neuroinflammation, 2016, 13, 307.	3.1	18
64	Ontogeny of Self-Sustaining Status epilepticus. Developmental Neuroscience, 1999, 21, 345-351.	1.0	17
65	Melanotan-II reverses autistic features in a maternal immune activation mouse model of autism. PLoS ONE, 2019, 14, e0210389.	1.1	16
66	Levetiracetam-induced depression in a 5-year-old child with partial epilepsy. Seizure: the Journal of the British Epilepsy Association, 2009, 18, 235-236.	0.9	15
67	Inherent vulnerabilities in monoaminergic pathways predict the emergence of depressive impairments in an animal model of chronic epilepsy. Epilepsia, 2017, 58, e116-e121.	2.6	15
68	Cytokine-dependent bidirectional connection between impaired social behavior and susceptibility to seizures associated with maternal immune activation in mice. Epilepsy and Behavior, 2015, 50, 40-45.	0.9	14
69	Galanin contributes to monoaminergic dysfunction and to dependent neurobehavioral comorbidities of epilepsy. Experimental Neurology, 2017, 289, 64-72.	2.0	14
70	Neurobiology of depression as a comorbidity of epilepsy. Epilepsia, 2010, 51, 81-81.	2.6	13
71	Autism-Like Behavior in BTBR Mice Is Improved by Electroconvulsive Therapy. Neurotherapeutics, 2015, 12, 657-666.	2.1	13
72	Susceptibility to epilepsy after traumatic brain injury is associated with preexistent gut microbiome profile. Epilepsia, 2022, 63, 1835-1848.	2.6	13

ANDREY M MAZARATI

#	Article	IF	CITATIONS
73	Blockers of NMDA receptors restore paired-pulse inhibition in the rat dentate gyrus lesioned by perforant path stimulation. Neuroscience Letters, 1997, 234, 135-138.	1.0	11
74	Epilepsy and Forgetfulness: One Impairment, Multiple Mechanisms. Epilepsy Currents, 2008, 8, 25-26.	0.4	11
75	2014 Epilepsy Benchmarks Area I: Understanding the Causes of the Epilepsies and Epilepsy-Related Neurologic, Psychiatric, and Somatic Conditions. Epilepsy Currents, 2016, 16, 182-186.	0.4	9
76	Status Epilepticus: Electrical Stimulation Models. , 2006, , 449-464.		8
77	Inflammation modifies status epilepticusâ€induced hippocampal injury during development. Epilepsia, 2007, 48, 16-18.	2.6	5
78	Regulation of kindling epileptogenesis by hippocampal Tollâ€like receptors 2. Epilepsia, 2017, 58, e122-e126.	2.6	4
79	Selective facilitation of kindled seizures from the amygdala after hippocampal lesions induced by perforant path stimulation. Neuroscience Letters, 1997, 224, 165-168.	1.0	3
80	The Best Model for a Cat is the Same Cat $\hat{a} \in \$ or is It?. Epilepsy Currents, 2007, 7, 112-114.	0.4	3
81	Status Epilepticus: Danse Macabre in a Ballet of Subunits. Epilepsy Currents, 2006, 6, 102-105.	0.4	2
82	Behavioral and Cognitive Testing Procedures in Animal Models of Epilepsy. , 2017, , 181-196.		2
83	Can we and should we use animal models to study neurobehavioral comorbidities of epilepsy?. Epilepsy and Behavior, 2019, 101, 106566.	0.9	2
84	Diversity of kindling of limbic seizures after lateral fluid percussion injury in the rat. Epilepsia Open, 2021, 6, 413-418.	1.3	2
85	Models of Depression a. , 2017, , 1091-1104.		1
86	Behavioral and neuroendocrine assays for studying epilepsyâ€associated depression. Epilepsia, 2013, 54, 2229-2229.	2.6	0
87	Commentary on Li et al. "Disrupted female estrous cyclicity in the intrahippocampal kainic acid mouse model of temporal lobe epilepsy― Epilepsia Open, 2018, 3, 131-133.	1.3	Ο
88	Preface to the special issue on epilepsy therapies dedicated to Dr. Raman Sankar. Epilepsia Open, 2018, 3, 111-113.	1.3	0
89	Neurobehavioral Comorbidities of Epilepsy: Lessons from Animal Models. Neuropsychiatric Symptoms of Neurological Disease, 2016, , 1-24.	0.3	0