Liang Feng

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2247421/liang-feng-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

58	4,334 citations	29	62
papers		h-index	g-index
62	5,810 ext. citations	15.8	6.08
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
58	Active mechanisorption driven by pumping cassettes. <i>Science</i> , 2021 , 374, 1215-1221	33.3	15
57	Site-Isolated Azobenzene-Containing Metal-Organic Framework for Cyclopalladated Catalyzed Suzuki-Miyuara Coupling in Flow. ACS Applied Materials & amp; Interfaces, 2021,	9.5	4
56	Metal®rganic Frameworks as Versatile Platforms for Organometallic Chemistry. <i>Inorganics</i> , 2021 , 9, 27	2.9	2
55	Morphology Transcription in Hierarchical MOF-on-MOF Architectures 2021 , 3, 738-743		2
54	A Series of Mesoporous Rare-Earth Metal-Organic Frameworks Constructed from Organic Secondary Building Units. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 2053-2057	16.4	19
53	A Series of Mesoporous Rare-Earth Metal Drganic Frameworks Constructed from Organic Secondary Building Units. <i>Angewandte Chemie</i> , 2021 , 133, 2081-2085	3.6	0
52	Linker Desymmetrization: Access to a Series of Rare-Earth Tetracarboxylate Frameworks with Eight-Connected Hexanuclear Nodes. <i>Journal of the American Chemical Society</i> , 2021 , 143, 2784-2791	16.4	23
51	Tuning the Adsorption Properties of Metal-Organic Frameworks through Coadsorbed Ammonia. <i>ACS Applied Materials & District Americals</i> , 13, 43661-43667	9.5	2
50	Thermally Activated Adsorption in Metal-Organic Frameworks with a Temperature-Tunable Diffusion Barrier Layer. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 18468-18472	16.4	5
49	Thermally Activated Adsorption in Metal Drganic Frameworks with a Temperature-Tunable Diffusion Barrier Layer. <i>Angewandte Chemie</i> , 2020 , 132, 18626-18630	3.6	
48	Optimizing Multivariate Metal-Organic Frameworks for Efficient CH/CO Separation. <i>Journal of the American Chemical Society</i> , 2020 , 142, 8728-8737	16.4	129
47	Hierarchy in Metal-Organic Frameworks. ACS Central Science, 2020, 6, 359-367	16.8	65
46	Rapid Generation of Hierarchically Porous Metal-Organic Frameworks through Laser Photolysis. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 11349-11354	16.4	28
45	Rapid Generation of Hierarchically Porous Metal Drganic Frameworks through Laser Photolysis. <i>Angewandte Chemie</i> , 2020 , 132, 11445-11450	3.6	5
44	Porous Crystalline Spherulite Superstructures. <i>CheM</i> , 2020 , 6, 460-471	16.2	14
43	Catalytic Porphyrin Framework Compounds. <i>Trends in Chemistry</i> , 2020 , 2, 555-568	14.8	44
42	An Encapsulation-Rearrangement Strategy to Integrate Superhydrophobicity into Mesoporous Metal-Organic Frameworks. <i>Matter</i> , 2020 , 2, 988-999	12.7	19

41	Continuous Variation of Lattice Dimensions and Pore Sizes in Metal-Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2020 , 142, 4732-4738	16.4	41
40	Modular Total Synthesis in Reticular Chemistry. <i>Journal of the American Chemical Society</i> , 2020 , 142, 30	6 2 6247	624
39	Hierarchically porous metal-organic frameworks: synthetic strategies and applications. <i>National Science Review</i> , 2020 , 7, 1743-1758	10.8	61
38	Seed-mediated evolution of hierarchical metal-organic framework quaternary superstructures. <i>Chemical Science</i> , 2020 , 11, 1643-1648	9.4	24
37	Rapid desolvation-triggered domino lattice rearrangement in a metal-organic framework. <i>Nature Chemistry</i> , 2020 , 12, 90-97	17.6	60
36	Strategies for Pore Engineering in Zirconium Metal-Organic Frameworks. <i>CheM</i> , 2020 , 6, 2902-2923	16.2	25
35	Destruction of Metal-Organic Frameworks: Positive and Negative Aspects of Stability and Lability. <i>Chemical Reviews</i> , 2020 , 120, 13087-13133	68.1	105
34	Porous Ti-MOF-74 Framework as a Strong-Binding Nitric Oxide Scavenger. <i>Journal of the American Chemical Society</i> , 2020 , 142, 16562-16568	16.4	12
33	Metal-Organic Frameworks Based on Group 3 and 4 Metals. <i>Advanced Materials</i> , 2020 , 32, e2004414	24	31
32	Multielectron transportation of polyoxometalate-grafted metalloporphyrin coordination frameworks for selective CO-to-CH photoconversion. <i>National Science Review</i> , 2020 , 7, 53-63	10.8	67
31	Molecular Pivot-Hinge Installation to Evolve Topology in Rare-Earth Metal-Organic Frameworks. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 16682-16690	16.4	29
30	Imprinted Apportionment of Functional Groups in Multivariate Metal-Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2019 , 141, 14524-14529	16.4	25
29	Controllable Synthesis of Metal-Organic Frameworks and Their Hierarchical Assemblies. <i>Matter</i> , 2019 , 1, 801-824	12.7	96
28	Metal©rganic Frameworks: Photosensitizer-Anchored 2D MOF Nanosheets as Highly Stable and Accessible Catalysts toward Artemisinin Production (Adv. Sci. 11/2019). <i>Advanced Science</i> , 2019 , 6, 1970	ođ&4 ⁶	1
27	Modular Programming of Hierarchy and Diversity in Multivariate Polymer/Metal-Organic Framework Hybrid Composites. <i>Journal of the American Chemical Society</i> , 2019 , 141, 10342-10349	16.4	27
26	Discovery of precise pH-controlled biomimetic catalysts: defective zirconium metal-organic frameworks as alkaline phosphatase mimics. <i>Nanoscale</i> , 2019 , 11, 11270-11278	7.7	14
25	Porphyrinic Metal Drganic Frameworks Installed with Bristed Acid Sites for Efficient Tandem Semisynthesis of Artemisinin. <i>ACS Catalysis</i> , 2019 , 9, 5111-5118	13.1	66
24	Reactivity of Atomic Layer Deposition Precursors with OH/H2O-Containing Metal Organic Framework Materials. <i>Chemistry of Materials</i> , 2019 , 31, 2286-2295	9.6	11

23	Temperature-Controlled Evolution of Nanoporous MOF Crystallites into Hierarchically Porous Superstructures. <i>CheM</i> , 2019 , 5, 1265-1274	16.2	58
22	Photosensitizer-Anchored 2D MOF Nanosheets as Highly Stable and Accessible Catalysts toward Artemisinin Production. <i>Advanced Science</i> , 2019 , 6, 1802059	13.6	60
21	Maximizing Photoresponsive Efficiency by Isolating Metal-Organic Polyhedra into Confined Nanoscaled Spaces. <i>Journal of the American Chemical Society</i> , 2019 , 141, 8221-8227	16.4	41
20	Biological Antagonism Inspired Detoxification: Removal of Toxic Elements by Porous Polymer Networks. <i>ACS Applied Materials & Acs Acs Applied Materials & Acs Acs Applied Materials & Acs Acs Acs Acc Acc Acc Acc Acc Acc Acc</i>	9.5	13
19	Lattice Expansion and Contraction in Metal-Organic Frameworks by Sequential Linker Reinstallation. <i>Matter</i> , 2019 , 1, 156-167	12.7	45
18	Topology Exploration in Highly Connected Rare-Earth Metal-Organic Frameworks via Continuous Hindrance Control. <i>Journal of the American Chemical Society</i> , 2019 , 141, 6967-6975	16.4	96
17	The chemistry of multi-component and hierarchical framework compounds. <i>Chemical Society Reviews</i> , 2019 , 48, 4823-4853	58.5	131
16	High stability of ultra-small and isolated gold nanoparticles in metalBrganic framework materials. Journal of Materials Chemistry A, 2019 , 7, 17536-17546	13	18
15	Molecular Pivot-Hinge Installation to Evolve Topology in Rare-Earth Metal©rganic Frameworks. <i>Angewandte Chemie</i> , 2019 , 131, 16835-16843	3.6	3
14	Uncovering Structural Opportunities for Zirconium Metal-Organic Frameworks via Linker Desymmetrization. <i>Advanced Science</i> , 2019 , 6, 1901855	13.6	13
13	Metal Drganic Frameworks: Uncovering Structural Opportunities for Zirconium Metal Drganic Frameworks via Linker Desymmetrization (Adv. Sci. 23/2019). <i>Advanced Science</i> , 2019 , 6, 1970141	13.6	78
12	Pore-Environment Engineering with Multiple Metal Sites in Rare-Earth Porphyrinic Metal © rganic Frameworks. <i>Angewandte Chemie</i> , 2018 , 130, 5189-5193	3.6	16
11	Retrosynthesis of multi-component metal-organic frameworks. <i>Nature Communications</i> , 2018 , 9, 808	17.4	122
10	Pore-Environment Engineering with Multiple Metal Sites in Rare-Earth Porphyrinic Metal-Organic Frameworks. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 5095-5099	16.4	103
9	Creating Hierarchical Pores by Controlled Linker Thermolysis in Multivariate Metal-Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2018 , 140, 2363-2372	16.4	200
8	Stable Metal-Organic Frameworks: Design, Synthesis, and Applications. <i>Advanced Materials</i> , 2018 , 30, e1704303	24	1138
7	Exposed Equatorial Positions of Metal Centers via Sequential Ligand Elimination and Installation in MOFs. <i>Journal of the American Chemical Society</i> , 2018 , 140, 10814-10819	16.4	50
6	Recyclable and Reusable Heteroleptic Nickel Catalyst Immobilized on Metal-Organic Framework for Suzuki-Miyaura Coupling. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 41431-41438	9.5	31

LIST OF PUBLICATIONS

5	Enhanced Separation of Butane Isomers via Defect Control in a Fumarate/Zirconium-Based Metal Organic Framework. <i>Langmuir</i> , 2018 , 34, 14546-14551	4	30
4	Uncovering Two Principles of Multivariate Hierarchical Metal-Organic Framework Synthesis via Retrosynthetic Design. <i>ACS Central Science</i> , 2018 , 4, 1719-1726	16.8	57
3	From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. <i>Chemical Society Reviews</i> , 2018 , 47, 8611-8638	58.5	656
2	Stable Metal©rganic Frameworks: Stable Metal©rganic Frameworks: Design, Synthesis, and Applications (Adv. Mater. 37/2018). <i>Advanced Materials</i> , 2018 , 30, 1870277	24	33
1	Construction of hierarchically porous metal-organic frameworks through linker labilization. <i>Nature Communications</i> , 2017 , 8, 15356	17.4	247