Urszula Szymanowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2246985/publications.pdf

Version: 2024-02-01

394421 434195 32 991 19 31 citations g-index h-index papers 33 33 33 1447 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Antioxidant Content and Antioxidant Capacity of the Protein-Rich Powdered Beverages Enriched with Flax Seeds Gum. Antioxidants, 2022, 11, 582.	5.1	5
2	The Protein-Rich Powdered Beverages Stabilized with Flax Seeds Gum—Antioxidant and Antiproliferative Properties of the Potentially Bioaccessible Fraction. Applied Sciences (Switzerland), 2022, 12, 7159.	2.5	5
3	Effect of Fortification with Raspberry Juice on the Antioxidant and Potentially Anti-Inflammatory Activity of Wafers Subjected to In Vitro Digestion. Foods, 2021, 10, 791.	4.3	8
4	Effects of Drying Methods on Antioxidant, Anti-Inflammatory, and Anticancer Potentials of Phenolic Acids in Lovage Elicited by Jasmonic Acid and Yeast Extract. Antioxidants, 2021, 10, 662.	5.1	4
5	Edible films based on gelatin, carboxymethyl cellulose, and their blends as carriers of potassium salts of iso-l±-acids: Structural, physicochemical and antioxidant properties. Food Hydrocolloids, 2021, 115, 106574.	10.7	26
6	Antioxidant and Anti-Inflammatory Potential and Consumer Acceptance of Wafers Enriched with Freeze-Dried Raspberry Pomace. Applied Sciences (Switzerland), 2021, 11, 6807.	2.5	6
7	Release of fireweed extract (Epilobium angustifolium L.) from corn starch- and methylcellulose-based films - A comparative study. Food Hydrocolloids, 2021, 120, 106887.	10.7	11
8	Corn starch and methylcellulose edible films incorporated with fireweed (Chamaenerion) Tj ETQq0 0 0 rgBT /Ove Journal of Biological Macromolecules, 2021, 190, 969-977.	rlock 10 T 7.5	f 50 467 Td (a 21
9	Studies on the development of vegetable-based powdered beverages – Effect of the composition and dispersing temperature on potential bioaccessibility of main low-molecular antioxidants and antioxidant properties. LWT - Food Science and Technology, 2020, 131, 109822.	5.2	5
10	Antioxidant and Potentially Anti-Inflammatory Properties in Pasta Fortified with Onion Skin. Applied Sciences (Switzerland), 2020, 10, 8164.	2.5	7
11	Effect of Jasmonic Acid, Yeast Extract Elicitation, and Drying Methods on the Main Bioactive Compounds and Consumer Quality of Lovage (Levisticum officinale Koch). Foods, 2020, 9, 323.	4.3	14
12	In vitro Antioxidant, Anti-inflammatory, Anti-metabolic Syndrome, Antimicrobial, and Anticancer Effect of Phenolic Acids Isolated from Fresh Lovage Leaves [Levisticum officinale Koch] Elicited with Jasmonic Acid and Yeast Extract. Antioxidants, 2020, 9, 554.	5.1	10
13	Release kinetics and antibacterial activity of potassium salts of iso-α-acids loaded into the films based on gelatin, carboxymethyl cellulose and their blends. Food Hydrocolloids, 2020, 109, 106104.	10.7	20
14	Antioxidant and Potentially Anti-Inflammatory Activity of Anthocyanin Fractions from Pomace Obtained from Enzymatically Treated Raspberries. Antioxidants, 2019, 8, 299.	5.1	50
15	Potential anti-inflammatory and lipase inhibitory peptides generated by <i>in vitro</i> gastrointestinal hydrolysis of heat treated millet grains. CYTA - Journal of Food, 2019, 17, 324-333.	1.9	30
16	Antioxidative and Potentially Anti-inflammatory Activity of Phenolics from Lovage Leaves Levisticum officinale Koch Elicited with Jasmonic Acid and Yeast Extract. Molecules, 2019, 24, 1441.	3.8	23
17	Effect of arachidonic and jasmonic acid elicitation on the content of phenolic compounds and antioxidant and anti-inflammatory properties of wheatgrass (Triticum aestivum L.). Food Chemistry, 2019, 288, 256-261.	8.2	22
18	Different Temperature Treatments of Millet Grains Affect the Biological Activity of Protein Hydrolyzates and Peptide Fractions. Nutrients, 2019, 11, 550.	4.1	24

#	Article	IF	CITATIONS
19	Peptides obtained from fermented faba bean seeds (Vicia faba) as potential inhibitors of an enzyme involved in the pathogenesis of metabolic syndrome. LWT - Food Science and Technology, 2019, 105, 306-313.	5.2	34
20	Antioxidant, Anti-Inflammatory, and Postulated Cytotoxic Activity of Phenolic and Anthocyanin-Rich Fractions from Polana Raspberry (Rubus idaeus L.) Fruit and Juice—In Vitro Study. Molecules, 2018, 23, 1812.	3.8	51
21	Digestion and bioavailability of bioactive phytochemicals. International Journal of Food Science and Technology, 2017, 52, 291-305.	2.7	123
22	Identification of potential inhibitory peptides of enzymes involved in the metabolic syndrome obtained by simulated gastrointestinal digestion of fermented bean (Phaseolus vulgaris L.) seeds. Food Research International, 2017, 100, 489-496.	6.2	67
23	Changes in the level and antioxidant activity of polyphenols during storage of enzymatically treated raspberry juices and syrups. Acta Scientiarum Polonorum, Technologia Alimentaria, 2017, 16, 269-282.	0.3	1
24	Antioxidative and antiâ€inflammatory potential of phenolics from purple basil (<i>Ocimum basilicum</i>) Tj ETQ Food Science and Technology, 2016, 51, 163-170.	q0 0 0 rgE 2.7	BT /Overlock I 49
25	Effect of jasmonic acid elicitation on the yield, chemical composition, and antioxidant and anti-inflammatory properties of essential oil of lettuce leaf basil (Ocimum basilicum L.). Food Chemistry, 2016, 213, 1-7.	8.2	62
26	Antioxidant activity of the aqueous and methanolic extracts of coffee beans (Coffea arabica L.). Acta Scientiarum Polonorum, Technologia Alimentaria, 2016, 15, 281-288.	0.3	11
27	Antioxidant activity of polyphenols of adzuki bean (Vigna angularis) germinated in abiotic stress conditions. Acta Scientiarum Polonorum, Technologia Alimentaria, 2015, 14, 55-63.	0.3	26
28	Bread enriched with Chenopodium quinoa leaves powder – The procedures for assessing the fortification efficiency. LWT - Food Science and Technology, 2015, 62, 1226-1234.	5.2	40
29	Anti-inflammatory and antioxidative activity of anthocyanins from purple basil leaves induced by selected abiotic elicitors. Food Chemistry, 2015, 172, 71-77.	8.2	71
30	Antioxidant activity of protein hydrolysates from raw and heat-treated yellow string beans (Phaseolus vulgaris L.). Acta Scientiarum Polonorum, Technologia Alimentaria, 2014, 13, 385-391.	0.3	19
31	Characterisation of lipoxygenase from pea seeds (Pisum sativum var. Telephone L.). Food Chemistry, 2009, 116, 906-910.	8.2	70
32	Characterization of polyphenol oxidase from broccoli (Brassica oleracea var. botrytis italica) florets. Food Chemistry, 2007, 105, 1047-1053.	8.2	76