
Tun-Ping Teng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2246771/publications.pdf Version: 2024-02-01

TUN-PING TENC

#	Article	IF	CITATIONS
1	Evaluation of Surfactants on Graphene Dispersion and Thermal Performance for Heat Dissipation Coating. Polymers, 2022, 14, 952.	4.5	4
2	Enhanced Heat Dissipation Performance of Automotive LED Lamps Using Graphene Coatings. Polymers, 2022, 14, 50.	4.5	4
3	Influence of Far Infrared TiO2 and Multi-Walled Carbon Nanotubes Coatings on the Performance of a Hot Water Heater. Applied Sciences (Switzerland), 2021, 11, 7043.	2.5	Ο
4	Enhanced Heat Transfer Performance of the Tube Heat Exchangers Using Carbon-Based Nanofluids. Applied Sciences (Switzerland), 2021, 11, 8139.	2.5	4
5	Evaluation of heat-exchange performance of carbon-based nanofluids for air-cooled exchangers with different cross-section shapes. Applied Thermal Engineering, 2020, 179, 115725.	6.0	6
6	Development of a performance enhancer for a dehumidifier. Journal of Mechanical Science and Technology, 2020, 34, 1775-1784.	1.5	1
7	High-yield production of graphene flakes using a novel electrochemical/mechanical hybrid exfoliation. International Journal of Advanced Manufacturing Technology, 2019, 104, 2751-2760.	3.0	14
8	Improving the efficiency and recognizability of the spectroscopy method for measuring nanofluid stability. Measurement: Journal of the International Measurement Confederation, 2019, 145, 204-213.	5.0	3
9	Characteristics of carbon-based nanofluids and their application in a brazed plate heat exchanger under laminar flow. Applied Thermal Engineering, 2019, 146, 160-168.	6.0	41
10	Preparation and Experimental Evaluation of Phase-Change Characteristics in Carbon-Based Suspensions. Materials, 2018, 11, 1315.	2.9	5
11	Fabrication and Characterization of Carbon-Based Nanofluids through the Water Vortex Trap Method. Journal of Nanomaterials, 2018, 2018, 1-13.	2.7	6
12	Study on the Phase Change Characteristics of Carbon-Based Nanofluids. Journal of Nanomaterials, 2018, 2018, 1-12.	2.7	16
13	Development of a performance booster for the evaporator of window-type air conditioners. Journal of Mechanical Science and Technology, 2018, 32, 3955-3964.	1.5	2
14	Performance evaluation of an air-cooled heat exchange system for hybrid nanofluids. Experimental Thermal and Fluid Science, 2017, 81, 43-55.	2.7	34
15	Performance Assessment and Scooter Verification of Nano-Alumina Engine Oil. Applied Sciences (Switzerland), 2016, 6, 258.	2.5	8
16	Performance evaluation on vacuum pumps using nanolubricants. Journal of Mechanical Science and Technology, 2016, 30, 4275-4283.	1.5	6
17	Fabrication and Characterization of Nanocarbon-Based Nanofluids by Using an Oxygen–Acetylene Flame Synthesis System. Nanoscale Research Letters, 2016, 11, 288.	5.7	13
18	Novel electricity-saving concept using a radio technique for indoor lighting. International Journal of Green Energy, 2016, 13, 983-989.	3.8	0

TUN-PING TENG

#	Article	IF	CITATIONS
19	Performance assessment of an air-cooled heat exchanger for multiwalled carbon nanotubes-water nanofluids. Applied Thermal Engineering, 2015, 89, 346-355.	6.0	19
20	Evaluating Stability of Aqueous Multiwalled Carbon Nanotube Nanofluids by Using Different Stabilizers. Journal of Nanomaterials, 2014, 2014, 1-15.	2.7	31
21	Estimation and experimental study of the density and specific heat for alumina nanofluid. Journal of Experimental Nanoscience, 2014, 9, 707-718.	2.4	108
22	Enhanced heat dissipation of a radiator using oxide nano-coolant. International Journal of Thermal Sciences, 2014, 77, 252-261.	4.9	98
23	Thermal conductivity and phase-change properties of aqueous alumina nanofluid. Energy Conversion and Management, 2013, 67, 369-375.	9.2	49
24	Heat dissipation performance of MWCNTs nano-coolant for vehicle. Experimental Thermal and Fluid Science, 2013, 49, 22-30.	2.7	78
25	Performance assessment of heat storage by phase change materials containing MWCNTs and graphite. Applied Thermal Engineering, 2013, 50, 637-644.	6.0	82
26	Feasibility Assessment of Thermal Management System for Green Power Sources Using Nanofluid. Journal of Nanomaterials, 2013, 2013, 1-11.	2.7	19
27	Preparation and Characterization of Carbon Nanofluids by Using a Revised Water-Assisted Synthesis Method. Journal of Nanomaterials, 2013, 2013, 1-12.	2.7	23
28	Degradation of Gaseous Formaldehyde by Visible Light-Responsive Titania Photocatalyst Filter. International Journal of Photoenergy, 2012, 2012, 1-10.	2.5	2
29	Characteristics of phase-change materials containing oxide nano-additives for thermal storage. Nanoscale Research Letters, 2012, 7, 611.	5.7	137
30	Assessment of heat dissipation performance for nanofluid. Applied Thermal Engineering, 2012, 32, 132-140.	6.0	47
31	Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow. Nanoscale Research Letters, 2011, 6, 488.	5.7	23
32	Preparation and characterization of carbon nanofluid by a plasma arc nanoparticles synthesis system. Nanoscale Research Letters, 2011, 6, 293.	5.7	33
33	Simulating Catalyst Filter Airflow and Formaldehyde Photocatalysis in the Duct. HVAC and R Research, 2010, 16, 497-512.	0.6	2
34	Performance Assessment of an R-134A Domestic Dehumidifier Retrofitted with a Hydrocarbon Mixture. International Journal of Green Energy, 2010, 7, 485-497.	3.8	4
35	Performance of overall heat transfer in multi-channel heat exchanger by alumina nanofluid. Journal of Alloys and Compounds, 2010, 504, S385-S388.	5.5	37