
Moshe Einat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/22467/publications.pdf Version: 2024-02-01

MOSHE FINAT

#	Article	IF	CITATIONS
1	75 m/s simulation and experiment of two-stage reluctance coilgun. Journal of Mechanical Science and Technology, 2022, 36, 1123-1130.	0.7	7
2	Investigation on a 220 GHz Quasi-Optical Antenna for Wireless Power Transmission. Electronics (Switzerland), 2021, 10, 634.	1.8	2
3	Corona and polio viruses are sensitive to short pulses of W-band gyrotron radiation. Environmental Chemistry Letters, 2021, 19, 3967-3972.	8.3	5
4	Thin-Film MEMS Resistors with Enhanced Lifetime for Thermal Inkjet. Micromachines, 2020, 11, 499.	1.4	5
5	The Effects of Instruction Manipulation on Motor Performance Following Action Observation. Frontiers in Human Neuroscience, 2020, 14, 33.	1.0	4
6	High-Average-Power Second Harmonic <i>W</i> Band Gyrotron With Room-Temperature Solenoid. IEEE Transactions on Electron Devices, 2020, 67, 1804-1807.	1.6	4
7	95 GHz gyrotron with water cooled magnet and high average power. , 2019, , .		1
8	Long-Pulse Uncooled Copper Magnet for Gyrotron. IEEE Transactions on Electron Devices, 2019, 66, 4928-4931.	1.6	4
9	Digital Signal Detection by a Glow Discharge Detector. IEEE Transactions on Plasma Science, 2019, 47, 95-99.	0.6	1
10	Reluctance Launcher Coil-Gun Simulations and Experiment. IEEE Transactions on Plasma Science, 2019, 47, 1358-1363.	0.6	20
11	Millimeter-wave insertion loss of mice skin. Journal of Electromagnetic Waves and Applications, 2018, 32, 758-767.	1.0	4
12	Possibility of Effective High-Frequency Generation in Low-Voltage Gyrotrons at the Second Cyclotron Harmonic. Radiophysics and Quantum Electronics, 2018, 61, 204-215.	0.1	0
13	95-GHz Gyrotron With Room Temperature dc Solenoid. IEEE Transactions on Electron Devices, 2018, 65, 3474-3478.	1.6	11
14	High-Power Millimeter Wave Direct Detection by Glow Discharge Detector. IEEE Transactions on Electron Devices, 2017, 64, 2670-2674.	1.6	5
15	A Trial Experiment on Water-Cooled 1.8-T 50% Duty Solenoid. IEEE Transactions on Electron Devices, 2017, 64, 2683-2687.	1.6	8
16	Characterization of a Schottky Diode Rectenna for Millimeter Wave Power Beaming Using High Power Radiation Sources. Acta Physica Polonica A, 2017, 131, 1280-1285.	0.2	13
17	Fluid Micro-Reservoirs Array Design with Auto-Pressure Regulation for High-Speed 3D Printers. Micromachines, 2016, 7, 202.	1.4	1
18	Ferroelectric cathode for mmw gyrotrons. , 2016, , .		0

Moshe Einat

#	Article	IF	CITATIONS
19	Initial results of 95 GHz gyrotron with water cooled magnet. , 2016, , .		3
20	Experimental Study of 50-kV/3.5-A Hollow Electron Beam Produced by Ferroelectric Cathode. IEEE Transactions on Electron Devices, 2016, 63, 2156-2162.	1.6	2
21	Frequency-Replaceable Ferroelectric Cathode Gyrotron for the Entire Ka-Band Using Replaceable Resonator. IEEE Transactions on Electron Devices, 2016, 63, 2097-2103.	1.6	3
22	Spaced Bitter Solenoid Design for a Continuous Wave 95-GHz Gyrotron. IEEE Transactions on Electron Devices, 2016, 63, 1333-1339.	1.6	6
23	Radiation Power Out-Coupling Optimization of a Free Electron Laser Oscillator. IEEE Transactions on Microwave Theory and Techniques, 2016, , 1-9.	2.9	3
24	Note: A 95 GHz mid-power gyrotron for medical applications measurements. Review of Scientific Instruments, 2015, 86, 016113.	0.6	16
25	2D segmented large inkjet printhead for high speed 3D printers. Journal of Micromechanics and Microengineering, 2015, 25, 055012.	1.5	2
26	A Long Cavity With Reduced Diffraction <inline-formula> <tex-math notation="LaTeX">\$Q\$ </tex-math></inline-formula> for Subterahertz and Terahertz Gyrotrons. IEEE Transactions on Plasma Science, 2015, 43, 2598-2606.	0.6	6
27	High efficiency Lifter based on the Biefeld-Brown effect. AIP Advances, 2014, 4, .	0.6	9
28	Ferroelectric Cathode Electron Emission Dependence on Magnetic Field. IEEE Transactions on Electron Devices, 2014, 61, 4268-4272.	1.6	1
29	Non-Imaging MM-Wave FMCW Sensor for Pedestrian Detection. IEEE Sensors Journal, 2014, 14, 1232-1237.	2.4	29
30	Design of 95 GHz gyrotron based on continuous operation copper solenoid with water cooling. Review of Scientific Instruments, 2014, 85, 074702.	0.6	20
31	Gyrotron With Dual Electrode Ferroelectric Cathode Operating at High Repetition Rate and Long Pulse. IEEE Transactions on Electron Devices, 2014, 61, 921-925.	1.6	7
32	Copper Solenoid Design for the Continuous Operation of a Second Harmonic 95-GHz Gyrotron. IEEE Transactions on Electron Devices, 2014, 61, 3309-3316.	1.6	20
33	Portable Passive Millimeter-Wave Sensor for Detecting Concealed Weapons and Explosives Hidden on a Human Body. IEEE Sensors Journal, 2013, 13, 4224-4228.	2.4	21
34	95ÂGHz Gyrotron with Ferroelectric Cathode. Physical Review Letters, 2012, 109, 185101.	2.9	22
35	23 GHz ferroelectric electron gun based gyrotron. Applied Physics Letters, 2011, 98, 173506.	1.5	7
36	Lifetime extension of ferroelectric cathodes for microwave tubes. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 636, 8-12.	0.7	9

Moshe Einat

#	Article	IF	CITATIONS
37	Induced static magnetic field by a cellular phone. Applied Physics Letters, 2011, 99, .	1.5	9
38	Detecting Hidden Objects on Human Body Using Active Millimeter Wave Sensor. IEEE Sensors Journal, 2010, 10, 1746-1752.	2.4	24
39	Microboiling Measurements of Thermal-Inkjet Heaters. Journal of Microelectromechanical Systems, 2010, 19, 391-395.	1.7	18
40	Passive mm-wave Sensor for In-Door and Out-Door Homeland Security Applications. , 2007, , .		4
41	Wide Band MM-Wave Sensor: design and applications. , 2006, , .		0
42	Two-dimension full array high-speed ink-jet print head. Applied Physics Letters, 2006, 89, 073505.	1.5	11
43	Coherence limits and chirp control in long pulse free electron laser oscillator. Physical Review Special Topics: Accelerators and Beams, 2005, 8, .	1.8	7
44	Radiation measurements in the new tandem accelerator FEL. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 528, 23-27.	0.7	10
45	Free-electron maser driven by a two-stage ferroelectric electron gun. Journal of Applied Physics, 2003, 93, 2304-2306.	1.1	5
46	Spectral measurements of gyrotron oscillator with ferroelectric electron gun. Applied Physics Letters, 2002, 81, 1347-1349.	1.5	10
47	The ferroelectric cathode. IEEE Potentials, 2002, 21, 8-11.	0.2	1
48	A microwave gyro amplifier with a ferroelectric cathode. IEEE Transactions on Microwave Theory and Techniques, 2002, 50, 1227-1230.	2.9	9
49	A ferroelectric electron gun in a free-electron maser experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 483, 326-330.	0.7	15
50	Anomalous free electron laser interaction. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 483, 482-487.	0.7	1
51	Lifetime of ferroelectric Pb(Zr, Ti)O3 ceramic cathodes with high current density. Journal of Applied Physics, 2001, 89, 548-552.	1.1	22
52	High-repetition-rate ferroelectric-cathode gyrotron. Applied Physics Letters, 2001, 79, 4097-4099.	1.5	16
53	Demonstration of microwave generation by a ferroelectric-cathode tube. Applied Physics Letters, 1999, 74, 335-337.	1.5	27
54	Normal and anomalous Doppler effects in a dielectric-loaded stripline cyclotron-resonance maser oscillator. Physical Review E, 1997, 56, 5996-6001.	0.8	30

#	Article	IF	CITATIONS
55	Cyclotron resonance maser experiment in a nondispersive waveguide. IEEE Transactions on Plasma Science, 1996, 24, 816-824.	0.6	4
56	Dielectric-loaded free-electron maser in a stripline structure. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 375, 21-25.	0.7	8
57	Free-electron maser operation at the 1 GHz/1 keV regime. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 375, 186-189.	0.7	1