Baoxue Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2246550/publications.pdf Version: 2024-02-01

		36203	38300
132	9,524	51	95
papers	citations	h-index	g-index
133	133	133	10081
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synthesis of Visible-Light Responsive Graphene Oxide/TiO ₂ Composites with p/n Heterojunction. ACS Nano, 2010, 4, 6425-6432.	7.3	829
2	Efficient Photocatalytic Degradation of Phenol over Co3O4/BiVO4Composite under Visible Light Irradiation. Journal of Physical Chemistry B, 2006, 110, 20211-20216.	1.2	819
3	Titanium Dioxide Nanomaterials for Sensor Applications. Chemical Reviews, 2014, 114, 10131-10176.	23.0	702
4	Selective Degradation of Organic Pollutants Using an Efficient Metal-Free Catalyst Derived from Carbonized Polypyrrole via Peroxymonosulfate Activation. Environmental Science & Technology, 2017, 51, 11288-11296.	4.6	514
5	Selfâ€Organized TiO ₂ Nanotube Array Sensor for the Determination of Chemical Oxygen Demand. Advanced Materials, 2008, 20, 1044-1049.	11.1	309
6	Spin-State-Dependent Peroxymonosulfate Activation of Single-Atom M–N Moieties via a Radical-Free Pathway. ACS Catalysis, 2021, 11, 9569-9577.	5.5	192
7	Highly selective photocatalytic production of H2O2 on sulfur and nitrogen co-doped graphene quantum dots tuned TiO2. Applied Catalysis B: Environmental, 2018, 239, 475-484.	10.8	178
8	Visible-Light Responsive Photocatalytic Fuel Cell Based on WO ₃ /W Photoanode and Cu ₂ O/Cu Photocathode for Simultaneous Wastewater Treatment and Electricity Generation. Environmental Science & Technology, 2012, 46, 11451-11458.	4.6	167
9	A highly active bimetallic oxides catalyst supported on Al-containing MCM-41 for Fenton oxidation of phenol solution. Applied Catalysis B: Environmental, 2011, 110, 118-125.	10.8	164
10	A TiO2-nanotube-array-based photocatalytic fuel cell using refractory organic compounds as substrates for electricity generation. Chemical Communications, 2011, 47, 10314.	2.2	156
11	A highly efficient BiVO 4 /WO 3 /W heterojunction photoanode for visible-light responsive dual photoelectrode photocatalytic fuel cell. Applied Catalysis B: Environmental, 2016, 183, 224-230.	10.8	151
12	Photoelectrocatalytic degradation of tetracycline by highly effective TiO2 nanopore arrays electrode. Journal of Hazardous Materials, 2009, 171, 678-683.	6.5	143
13	Efficient electricity production and simultaneously wastewater treatment via a high-performance photocatalytic fuel cell. Water Research, 2011, 45, 3991-3998.	5.3	138
14	Synthesis of WO3/BiVO4 photoanode using a reaction of bismuth nitrate with peroxovanadate on WO3 film for efficient photoelectrocatalytic water splitting and organic pollutant degradation. Applied Catalysis B: Environmental, 2017, 217, 21-29.	10.8	134
15	High-performance BiVO4 photoanodes cocatalyzed with an ultrathin α-Fe2O3 layer for photoelectrochemical application. Applied Catalysis B: Environmental, 2017, 204, 127-133.	10.8	133
16	Carbon quantum dots modified anatase/rutile TiO2 photoanode with dramatically enhanced photoelectrochemical performance. Applied Catalysis B: Environmental, 2020, 269, 118776.	10.8	132
17	Highly selective transformation of ammonia nitrogen to N2 based on a novel solar-driven photoelectrocatalytic-chlorine radical reactions system. Water Research, 2017, 125, 512-519.	5.3	127
18	A new glass substrate photoelectrocatalytic electrode for efficient visible-light hydrogen production: CdS sensitized TiO2 nanotube arrays. Applied Catalysis B: Environmental, 2010, 95, 408-413.	10.8	120

#	Article	IF	CITATIONS
19	Bird-nest structured ZnO/TiO2 as a direct Z-scheme photoanode with enhanced light harvesting and carriers kinetics for highly efficient and stable photoelectrochemical water splitting. Applied Catalysis B: Environmental, 2020, 267, 118599.	10.8	116
20	Highly stable CdS-modified short TiO2 nanotube array electrode for efficient visible-light hydrogen generation. International Journal of Hydrogen Energy, 2011, 36, 167-174.	3.8	115
21	Preparation of vertically aligned WO3 nanoplate array films based on peroxotungstate reduction reaction and their excellent photoelectrocatalytic performance. Applied Catalysis B: Environmental, 2017, 202, 388-396.	10.8	114
22	Photoelectrocatalytic degradation of refractory organic compounds enhanced by a photocatalytic fuel cell. Applied Catalysis B: Environmental, 2012, 111-112, 485-491.	10.8	110
23	RhB Adsorption Performance of Magnetic Adsorbent Fe3O4/RGO Composite and Its Regeneration through A Fenton-like Reaction. Nano-Micro Letters, 2014, 6, 125-135.	14.4	109
24	A solar light driven dual photoelectrode photocatalytic fuel cell (PFC) for simultaneous wastewater treatment and electricity generation. Journal of Hazardous Materials, 2016, 311, 51-62.	6.5	103
25	Monolithic cobalt-doped carbon aerogel for efficient catalytic activation of peroxymonosulfate in water. Journal of Hazardous Materials, 2017, 332, 195-204.	6.5	103
26	Efficient photochemical water splitting and organic pollutant degradation by highly ordered TiO2 nanopore arrays. Applied Catalysis B: Environmental, 2009, 89, 142-148.	10.8	96
27	Preparation, characterization and visible-light activity of carbon modified TiO2 with two kinds of carbonaceous species. Journal of Molecular Catalysis A, 2009, 314, 35-41.	4.8	92
28	Converting hazardous organics into clean energy using a solar responsive dual photoelectrode photocatalytic fuel cell. Journal of Hazardous Materials, 2013, 262, 304-310.	6.5	92
29	Exhaustive Conversion of Inorganic Nitrogen to Nitrogen Gas Based on a Photoelectro-Chlorine Cycle Reaction and a Highly Selective Nitrogen Gas Generation Cathode. Environmental Science & Technology, 2018, 52, 1413-1420.	4.6	87
30	Highly-stable and efficient photocatalytic fuel cell based on an epitaxial TiO2/WO3/W nanothorn photoanode and enhanced radical reactions for simultaneous electricity production and wastewater treatment. Applied Energy, 2018, 220, 127-137.	5.1	87
31	Modulation of Lewis acidic-basic sites for efficient photocatalytic H2O2 production over potassium intercalated tri-s-triazine materials. Applied Catalysis B: Environmental, 2020, 277, 119225.	10.8	85
32	Enhanced organic pollutants degradation and electricity production simultaneously via strengthening the radicals reaction in a novel Fenton-photocatalytic fuel cell system. Water Research, 2017, 108, 293-300.	5.3	84
33	Extremely Efficient Decomposition of Ammonia N to N ₂ Using ClO [•] from Reactions of HO [•] and HOCl Generated <i>in Situ</i> on a Novel Bifacial Photoelectroanode. Environmental Science & Technology, 2019, 53, 6945-6953.	4.6	84
34	Dramatically enhanced solar-driven water splitting of BiVO4 photoanode via strengthening hole transfer and light harvesting by co-modification of CQDs and ultrathin β-FeOOH layers. Chemical Engineering Journal, 2021, 403, 126350.	6.6	82
35	Photoelectrocatalytic COD determination method using highly ordered TiO2 nanotube array. Water Research, 2009, 43, 1986-1992.	5.3	81
36	A novel in situ preparation method for nanostructured α-Fe ₂ O ₃ films from electrodeposited Fe films for efficient photoelectrocatalytic water splitting and the degradation of organic pollutants. Journal of Materials Chemistry A, 2015, 3, 4345-4353.	5.2	79

#	Article	IF	CITATIONS
37	The formation mechanism of titania nanotube arrays in hydrofluoric acid electrolyte. Journal of Materials Science, 2008, 43, 1880-1884.	1.7	76
38	Highly-active, metal-free, carbon-based ORR cathode for efficient organics removal and electricity generation in a PFC system. Chinese Chemical Letters, 2021, 32, 2212-2216.	4.8	70
39	Preparation of short, robust and highly ordered TiO2 nanotube arrays and their applications as electrode. Applied Catalysis B: Environmental, 2009, 92, 326-332.	10.8	69
40	Efficient photocatalytic H2O2 production from oxygen and pure water over graphitic carbon nitride decorated by oxidative red phosphorus. Applied Catalysis B: Environmental, 2021, 298, 120522.	10.8	68
41	BiVO4/TiO2(N2) Nanotubes Heterojunction Photoanode for Highly Efficient Photoelectrocatalytic Applications. Nano-Micro Letters, 2017, 9, 14.	14.4	66
42	A low-cost photoelectrochemical tandem cell for highly-stable and efficient solar water splitting. Nano Energy, 2017, 41, 225-232.	8.2	62
43	Magnetically separable mesoporous silica nanocomposite and its application in Fenton catalysis. Microporous and Mesoporous Materials, 2011, 145, 217-223.	2.2	61
44	Synthesis of coated solvent impregnated resin for the adsorption of indium (III). Hydrometallurgy, 2010, 101, 148-155.	1.8	60
45	Combined nanostructured Bi2S3/TNA photoanode and Pt/SiPVC photocathode for efficient self-biasing photoelectrochemical hydrogen and electricity generation. Nano Energy, 2014, 9, 152-160.	8.2	59
46	Aerated visible-light responsive photocatalytic fuel cell for wastewater treatment with producing sustainable electricity in neutral solution. Chemical Engineering Journal, 2014, 252, 89-94.	6.6	58
47	BiVO4 Photoanode with Exposed (040) Facets for Enhanced Photoelectrochemical Performance. Nano-Micro Letters, 2018, 10, 11.	14.4	58
48	Total organic carbon and total nitrogen removal and simultaneous electricity generation for nitrogen-containing wastewater based on the catalytic reactions of hydroxyl and chlorine radicals. Applied Catalysis B: Environmental, 2018, 238, 168-176.	10.8	58
49	A novel thin-layer photoelectrocatalytic (PEC) reactor with double-faced titania nanotube arrays electrode for effective degradation of tetracycline. Applied Catalysis B: Environmental, 2010, 98, 154-160.	10.8	57
50	Enhanced Photoelectrochemical Properties of Cu2O-loaded Short TiO2 Nanotube Array Electrode Prepared by Sonoelectrochemical Deposition. Nano-Micro Letters, 2010, 2, 277-284.	14.4	55
51	Dramatic enhancement of organics degradation and electricity generation via strengthening superoxide radical by using a novel 3D AQS/PPy-GF cathode. Water Research, 2017, 125, 259-269.	5.3	53
52	Electrochemically reduced TiO2 photoanode coupled with oxygen vacancy-rich carbon quantum dots for synergistically improving photoelectrochemical performance. Chemical Engineering Journal, 2021, 425, 131770.	6.6	53
53	Preparation of well-aligned WO3 nanoflake arrays vertically grown on tungsten substrate as photoanode for photoelectrochemical water splitting. Electrochemistry Communications, 2012, 20, 153-156.	2.3	52
54	Photoeletrocatalytic activity of an n-ZnO/p-Cu2O/n-TNA ternary heterojunction electrode for tetracycline degradation. Journal of Hazardous Materials, 2013, 262, 482-488.	6.5	52

#	Article	IF	CITATIONS
55	Influence of the presence of heavy metals and surface-active compounds on the sorption of bisphenol A to sediment. Chemosphere, 2007, 68, 1298-1303.	4.2	51
56	Efficient visible light photocatalytic heterostructure of nonstoichiometric bismuth oxyiodide and iodine intercalated Bi2O2CO3. Applied Catalysis B: Environmental, 2016, 184, 20-27.	10.8	49
57	Comparison of photoelectrochemical properties of TiO2-nanotube-array photoanode prepared by anodization in different electrolyte. Environmental Chemistry Letters, 2009, 7, 363-368.	8.3	48
58	Removal of trivalent chromium in the complex state of trivalent chromium passivation wastewater. Chemical Engineering Journal, 2014, 236, 59-65.	6.6	46
59	A novel 3D ZnO/Cu ₂ O nanowire photocathode material with highly efficient photoelectrocatalytic performance. Journal of Materials Chemistry A, 2015, 3, 22996-23002.	5.2	46
60	Enhanced Oxidation of Organic Contaminants by Mn(VII)/CaSO3 Under Environmentally Relevant Conditions: Performance and Mechanisms. Water Research, 2021, 188, 116481.	5.3	45
61	Serial hole transfer layers for a BiVO ₄ photoanode with enhanced photoelectrochemical water splitting. Nanoscale, 2018, 10, 18378-18386.	2.8	44
62	Exhaustive denitrification via chlorine oxide radical reactions for urea based on a novel photoelectrochemical cell. Water Research, 2020, 170, 115357.	5.3	44
63	Selfâ€Biasing Photoelectrochemical Cell for Spontaneous Overall Water Splitting under Visibleâ€Light Illumination. ChemSusChem, 2013, 6, 1276-1281.	3.6	41
64	Novel 3D Pd-Cu(OH)2/CF cathode for rapid reduction of nitrate-N and simultaneous total nitrogen removal from wastewater. Journal of Hazardous Materials, 2021, 401, 123232.	6.5	40
65	Efficient ammonia removal and toxic chlorate control by using BiVO4/WO3 heterojunction photoanode in a self-driven PEC-chlorine system. Journal of Hazardous Materials, 2021, 402, 123725.	6.5	40
66	The Inhibition Effect of Tert-Butyl Alcohol on the TiO2 Nano Assays Photoelectrocatalytic Degradation of Different Organics and Its Mechanism. Nano-Micro Letters, 2016, 8, 221-231.	14.4	39
67	Efficient degradation of refractory organics for carbonate-containing wastewater via generation carbonate radical based on a photoelectrocatalytic TNA-MCF system. Applied Catalysis B: Environmental, 2019, 259, 118071.	10.8	36
68	Efficient wastewater treatment and simultaneously electricity production using a photocatalytic fuel cell based on the radical chain reactions initiated by dual photoelectrodes. Journal of Hazardous Materials, 2017, 337, 47-54.	6.5	36
69	Oxygen vacancy-abundant carbon quantum dots as superfast hole transport channel for vastly improving surface charge transfer efficiency of BiVO4 photoanode. Chemical Engineering Journal, 2022, 431, 133414.	6.6	36
70	Self-Driven Photoelectrochemical Splitting of H ₂ S for S and H ₂ Recovery and Simultaneous Electricity Generation. Environmental Science & Technology, 2017, 51, 12965-12971.	4.6	35
71	Efficient degradation of N-containing organic wastewater via chlorine oxide radical generated by a photoelectrochemical system. Chemical Engineering Journal, 2020, 392, 123695.	6.6	35
72	Influence of the coexisting contaminants on bisphenol A sorption and desorption in soil. Journal of Hazardous Materials, 2008, 151, 389-393.	6.5	34

#	Article	IF	CITATIONS
73	In-situ and synchronous generation of oxygen vacancies and FeOx OECs on BiVO4 for ultrafast electron transfer and excellent photoelectrochemical performance. Chemical Engineering Journal, 2020, 401, 126134.	6.6	34
74	Magnetically separable maghemite/montmorillonite composite as an efficient heterogeneous Fenton-like catalyst for phenol degradation. Environmental Science and Pollution Research, 2017, 24, 1926-1937.	2.7	33
75	The effect and mechanism of organic pollutants oxidation and chemical energy conversion for neutral wastewater via strengthening reactive oxygen species. Science of the Total Environment, 2019, 651, 1226-1235.	3.9	32
76	Highly efficient removal of total nitrogen and dissolved organic compound in waste reverse osmosis concentrate mediated by chlorine radical on 3D Co3O4 nanowires anode. Journal of Hazardous Materials, 2022, 424, 127662.	6.5	30
77	Preparation of a BiVO ₄ nanoporous photoanode based on peroxovanadate reduction and conversion for efficient photoelectrochemical performance. Nanoscale, 2018, 10, 2848-2855.	2.8	28
78	Highly efficient total nitrogen and simultaneous total organic carbon removal for urine based on the photoelectrochemical cycle reaction of chlorine and hydroxyl radicals. Electrochimica Acta, 2019, 297, 1-9.	2.6	27
79	The design of high performance photoanode of CQDs/TiO2/WO3 based on DFT alignment of lattice parameter and energy band, and charge distribution. Journal of Colloid and Interface Science, 2021, 600, 828-837.	5.0	27
80	Dramatic enhancement of photocurrent for BiVO4/TiO2 heterojunction photoanode with suitable band-match via in-situ band regulation using Ta. International Journal of Hydrogen Energy, 2018, 43, 18202-18210.	3.8	26
81	Efficient SO ₂ Removal and Highly Synergistic H ₂ O ₂ Production Based on a Novel Dual-Function Photoelectrocatalytic System. Environmental Science & Technology, 2020, 54, 11515-11525.	4.6	25
82	Template-free sol–gel preparation and characterization of free-standing visible light responsive C,N-modified porous monolithic TiO2. Journal of Hazardous Materials, 2010, 178, 560-565.	6.5	24
83	The hazardous hexavalent chromium formed on trivalent chromium conversion coating: The origin, influence factors and control measures. Journal of Hazardous Materials, 2012, 221-222, 56-61.	6.5	24
84	High-efficient energy recovery from organics degradation for neutral wastewater treatment based on radicals catalytic reaction of Fe2+/Fe3+-EDTA complexes. Chemosphere, 2018, 201, 59-65.	4.2	24
85	High yield of H2O2 and efficient S recovery from toxic H2S splitting through a self-driven photoelectrocatalytic system with a microporous GDE cathode. Applied Catalysis B: Environmental, 2018, 238, 491-497.	10.8	24
86	Electron blocking and hole extraction by a dual-function layer for hematite with enhanced photoelectrocatalytic performance. Applied Catalysis B: Environmental, 2018, 237, 175-184.	10.8	23
87	Novel Denitrification Fuel Cell for Energy Recovery of Nitrate-N and TN Removal Based on NH ₄ ⁺ Generation on a CNW@CF Cathode. Environmental Science & Technology, 2022, 56, 2562-2571.	4.6	23
88	Enhanced photoelectrocatalytic performance of nanoporous WO3 photoanode by modification of cobalt–phosphate (Co–Pi) catalyst. Journal of Solid State Electrochemistry, 2014, 18, 157-161.	1.2	22
89	Enhanced O2â^' and HO via in situ generating H2O2 at activated graphite felt cathode for efficient photocatalytic fuel cell. Chemical Engineering Journal, 2020, 399, 125839.	6.6	22
90	Preparation of hematite with an ultrathin iron titanate layer via an in situ reaction and its stable, long-lived, and excellent photoelectrochemical performance. Applied Catalysis B: Environmental, 2017, 218, 690-699.	10.8	21

#	Article	IF	CITATIONS
91	Photocatalytic fuel cell based on sulfate radicals converted from sulfates in situ for wastewater treatment and chemical energy utilization. Catalysis Today, 2019, 335, 485-491.	2.2	21
92	Efficient purification and chemical energy recovery from urine by using a denitrifying fuel cell. Water Research, 2019, 152, 117-125.	5.3	21
93	WO3/W Nanopores Sensor for Chemical Oxygen Demand (COD) Determination under Visible Light. Sensors, 2014, 14, 10680-10690.	2.1	19
94	Efficient denitrification and removal of natural organic matter, emerging pollutants simultaneously for RO concentrate based on photoelectrocatalytic radical reaction. Separation and Purification Technology, 2020, 234, 116032.	3.9	19
95	TiO2 nanotube arrays and TiO2-nanotube-array based dye-sensitized solar cell. Science Bulletin, 2007, 52, 1585-1589.	1.7	18
96	Treatment of hazardous organic amine wastewater and simultaneous electricity generation using photocatalytic fuel cell based on TiO2/WO3 photoanode and Cu nanowires cathode. Chemosphere, 2022, 289, 133119.	4.2	17
97	The Promotion Effect of Low-Molecular Hydroxyl Compounds on the Nano-Photoelectrocatalytic Degradation of Fulvic Acid and Mechanism. Nano-Micro Letters, 2016, 8, 320-327.	14.4	16
98	Efficient Degradation of Refractory Organics Using Sulfate Radicals Generated Directly from WO3 Photoelectrode and the Catalytic Reaction of Sulfate. Catalysts, 2017, 7, 346.	1.6	16
99	Rapid Conversion of Co ²⁺ to Co ³⁺ by Introducing Oxygen Vacancies in Co ₃ O ₄ Nanowire Anodes for Nitrogen Removal with Highly Efficient H ₂ Recovery in Urine Treatment. Environmental Science & Science & Science, 2022, 56, 9693-9701.	4.6	16
100	Scalable one-step synthesis of TiO ₂ /WO ₃ films on titanium plates with an efficient electron storage ability. Journal of Materials Chemistry A, 2015, 3, 10195-10198.	5.2	14
101	Efficient TN removal and simultaneous TOC conversion for highly toxic organic amines based on a photoelectrochemical-chlorine radicals process. Catalysis Today, 2019, 335, 452-459.	2.2	14
102	Efficient urine removal, simultaneous elimination of emerging contaminants, and control of toxic chlorate in a photoelectrocatalytic-chlorine system. Environmental Pollution, 2020, 267, 115605.	3.7	14
103	Efficient organic pollutants conversion and electricity generation for carbonate-containing wastewater based on carbonate radical reactions initiated by BiVO4-Au/PVC system. Journal of Hazardous Materials, 2020, 389, 122140.	6.5	14
104	Effect of Oxygen–Iron Composition on Charge Transport and Interface Reaction in Hematite. ACS Catalysis, 2020, 10, 2413-2418.	5.5	14
105	High Yield of CO and Synchronous S Recovery from the Conversion of CO ₂ and H ₂ S in Natural Gas Based on a Novel Electrochemical Reactor. Environmental Science & Technology, 2021, 55, 14854-14862.	4.6	14
106	Assessment of a COD analytical method based on the photoelectrocatalysis of a TiO2 nanotube array sensor. Analytical Methods, 2012, 4, 1790.	1.3	13
107	TiO ₂ Nanotube Sensor for Online Chemical Oxygen Demand Determination in Conjunction with Flow Injection Technique. Water Environment Research, 2014, 86, 532-539.	1.3	12
108	The synergic generation of CO3â^' and O2â^' radicals in a novel photocatalytic fuel cell for efficient oxidation of carbonate-containing wastewater and simultaneous electricity production. Applied Catalysis B: Environmental, 2020, 277, 119227.	10.8	11

#	Article	IF	CITATIONS
109	Efficient WO3â^'x nanoplates photoanode based on bidentate hydrogen bonds and thermal reduction of ethylene glycol. Chemical Engineering Journal, 2021, 404, 127089.	6.6	11
110	Kinetics and Mechanisms for Photoelectrochemical Degradation of Glucose on Highly Effective Self-Organized TiO2 Nanotube Arrays. Chinese Journal of Catalysis, 2010, 31, 163-170.	6.9	10
111	Highly-ordered dye-sensitized TiO2 nanotube arrays film used for improving photoelectrochemical electrodes. Science China Chemistry, 2013, 56, 101-105.	4.2	8
112	Simulation and engineering demonstration of the advanced treatment of rainy overflow wastewater using a combined system of storage tankâ€wastewater treatment plantâ€wetland. Water Environment Research, 2020, 92, 1057-1069.	1.3	8
113	Thermal decomposition of N,N′-ethylenebis(salicylideneiminato) diaquochromium(III) chloride. Thermochimica Acta, 2000, 354, 25-30.	1.2	7
114	Charge recombination in dye-sensitized nanoporous TiO2 solar cell. Science Bulletin, 2005, 50, 2408-2412.	1.7	7
115	Tungsten sulfide co-catalytic radical chain-reaction for efficient organics degradation and electricity generation. Applied Catalysis B: Environmental, 2020, 268, 118471.	10.8	7
116	Thermodynamic Functions for Transfer of Anthracene from Water to (Water + Alcohol) Mixtures at 298.15 K. Journal of Chemical & Engineering Data, 2003, 48, 742-745.	1.0	6
117	Characterization and Mechanism of the Photoelectrocatalytic Oxidation of Organic Pollutants in a Thin-Layer Reactor. Chinese Journal of Catalysis, 2011, 32, 1357-1363.	6.9	6
118	Photoelectrocatalytic Performance of Benzoic Acid onTiO2Nanotube Array Electrodes. International Journal of Photoenergy, 2013, 2013, 1-7.	1.4	6
119	Photoelectrocatalytic generation of H2 and S from toxic H2S by using a novel BiOI/WO3 nanoflake array photoanode. Frontiers in Energy, 2021, 15, 744.	1.2	6
120	Multistep Surface Trap State Finishing Based on in Situ One-Step MOF Modification over Hematite for Dramatically Enhanced Solar Water Oxidation. ACS Applied Materials & Interfaces, 2020, 12, 33638-33646.	4.0	5
121	Adsorption and photoelectrocatalytic characteristics of organics on TiO2 nanotube arrays. Journal of Solid State Electrochemistry, 2012, 16, 3907-3914.	1.2	4
122	Enhanced Photoelectrochemical Properties of Cu2O-loaded Short TiO2 Nanotube Array Electrode Prepared by Sonoelectrochemical Deposition. , 2010, 2, 277.		4
123	Thermodynamics of transfer of naphthalene and 2-naphthoic acid from water to (water+ethanol) mixtures at T=298.15 K. Journal of Chemical Thermodynamics, 2003, 35, 1413-1424.	1.0	3
124	Efficient Hydrogen Generation and Total Nitrogen Removal for Urine Treatment in a Neutral Solution Based on a Self-Driving Nano Photoelectrocatalytic System. Nanomaterials, 2021, 11, 2777.	1.9	3
125	Effect of Structural Parameters of TiO ₂ Nanotube Arrays upon Their Photocatalytic/Photoelectrocatalytic Performance. Chinese Journal of Chemistry, 2011, 29, 2236-2242.	2.6	2
126	Simple method to quantify extraneous water and organic matter degradation in sewer networks. Environmental Science: Water Research and Technology, 2021, 7, 172-183.	1.2	2

#	Article	IF	CITATIONS
127	RhB Adsorption Performance of Magnetic Adsorbent Fe ₃ O ₄ /RGO Composite and Its Regeneration through A Fenton-like Reaction. Nano-Micro Letters, 2014, 6, 125.	14.4	2
128	Thermal decomposition of Mn(II) complex of nicotinamide. Journal of Thermal Analysis, 1995, 45, 221-226.	0.7	1
129	Photoelectrochemical degradation of methyl orange by TiO2 nanopore arrays electrode and its comparison with TiO2 nanotube arrays electrode. Water Science and Technology, 2010, 62, 2783-2789.	1.2	1
130	Synthesis and Photocatalytic Application of Hierarchical Macroporous TiO2 with Mesocellular Foam Structure Using Eggshell Membrane as Template. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	1
131	Solubility of 2,2′,6,6′-Tetrabromo-4,4′-isopropylidene Phenol in Aqueous Pollutant Solutions. Journal of Chemical & Engineering Data, 2013, 58, 3150-3154.	1.0	1
132	The Promotion Effect and Mechanism of Methanoic Acid on the Photoelectrocatalytic Degradation of Fulvic Acid. Journal of Chemistry, 2016, 2016, 1-7.	0.9	0