
V Mahendra Reddy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/224643/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Studies on a liquid fuel based two stage flameless combustor. Proceedings of the Combustion Institute, 2013, 34, 3319-3326.	2.4	64
2	Experimental and numerical analysis for high intensity swirl based ultra-low emission flameless combustor operating with liquid fuels. Proceedings of the Combustion Institute, 2015, 35, 3581-3589.	2.4	59
3	Simulation of MILD combustion using Perfectly Stirred Reactor model. Proceedings of the Combustion Institute, 2017, 36, 4279-4286.	2.4	50
4	Combustion characteristics of biodiesel fuel in high recirculation conditions. Fuel Processing Technology, 2014, 118, 310-317.	3.7	44
5	Investigations on a new internally-heated tubular packed-bed methanol–steam reformer. International Journal of Hydrogen Energy, 2015, 40, 5715-5725.	3.8	44
6	Implication viability assessment of shift to electric vehicles for present power generation scenario of India. Energy, 2020, 195, 116976.	4.5	43
7	Development of high intensity low emission combustor for achieving flameless combustion of liquid fuels. Propulsion and Power Research, 2013, 2, 139-147.	2.0	33
8	Experimental Investigations on Lifted Spray Flames for a Range of Coflow Conditions. Combustion Science and Technology, 2012, 184, 44-63.	1.2	31
9	Implication viability assessment of electric vehicles for different regions: An approach of life cycle assessment considering exergy analysis and battery degradation. Energy Conversion and Management, 2021, 237, 114104.	4.4	31
10	Investigations on Emission Characteristics of Liquid Fuels in a Swirl Combustor. Combustion Science and Technology, 2015, 187, 469-488.	1.2	29
11	Numerical and chemical kinetic analysis to evaluate the effect of steam dilution and pressure on combustion of n-dodecane in a swirling flow environment. Fuel, 2021, 288, 119710.	3.4	23
12	Development of the Reduced Chemical Kinetic Mechanism for Combustion of H ₂ /CO/C ₁ –C ₄ Hydrocarbons. Energy & Fuels, 2021, 35, 718-742.	2.5	21
13	Analysis of active cooling panels in a scramjet combustor considering the thermal cracking of hydrocarbon fuel. Applied Thermal Engineering, 2019, 147, 231-241.	3.0	18
14	Chemical Kinetic Modeling of the Autoignition Properties of Ammonia at Low–Intermediate Temperature and High Pressure using a Newly Proposed Reaction Mechanism. Energy & Fuels, 2021, 35, 13506-13522.	2.5	16
15	Mathematical Modeling of Solar Energy based Thermal Energy Storage for House Heating in Winter. Journal of Energy Storage, 2021, 34, 102203.	3.9	15
16	Experimental and numerical studies on heat recirculated high intensity meso-scale combustor for mini gas turbine applications. Energy Conversion and Management, 2018, 176, 324-333.	4.4	13
17	Chemical kinetic analysis on influence of hydrogen enrichment on the combustion characteristics of ammonia air using newly proposed reaction model. International Journal of Energy Research, 2022, 46, 6144-6163.	2.2	12
18	Cenosphere formation from heavy fuel oil: a numerical analysis accounting for the balance between porous shells and internal pressure. Combustion Theory and Modelling, 2016, 20, 154-172.	1.0	10

V MAHENDRA REDDY

#	Article	IF	CITATIONS
19	Numerical investigations on tri-fuel chemical kinetics of hydrogen + Methane +LPG/air mixtures using reduced skeletal mechanism. International Journal of Hydrogen Energy, 2022, 47, 23038-23059.	3.8	9
20	Adaptability of different mechanisms and kinetic study of methane combustion in steam diluted environments. Scientific Reports, 2022, 12, 4577.	1.6	8
21	Numerical Analysis of Lifted Spray Flames in Various Coflow Conditions. Combustion Science and Technology, 2020, 192, 680-700.	1.2	6
22	Auto-Ignition and Numerical Analysis on High-Pressure Combustion of Premixed Methane-Air mixtures in Highly Preheated and Diluted Environment. Combustion Science and Technology, 0, , 1-23.	1.2	6
23	Design and calibration of a new compact radiative heat-flux gauge (RHFG) for combustion applications. Sensors and Actuators A: Physical, 2013, 203, 62-68.	2.0	5
24	Computational analysis of influence of particle size, oxygen concertation, and furnace temperature on the ignition characteristics of pulverized high ash and high moisture coal particle. AEJ - Alexandria Engineering Journal, 2022, 61, 6169-6180.	3.4	4
25	Effect of the Preheated Oxidizer Temperature on Soot Formation and Flame Structure in Turbulent Methane-Air Diffusion Flames at 1 and 3 atm: A CFD Investigation. Energies, 2021, 14, 3671.	1.6	3
26	Estimation of Chaotic Surface Pressure Characteristics of Ice Accreted Airfoils–A 0–1 Test Approach. IEEE Access, 2021, 9, 114441-114456.	2.6	2
27	Studies on Optimization of a Liquid Fuel Based Low Emission Combustor. , 2012, , .		1
28	Novel thermal treatment model to decontaminate airborne SARS Covâ€2 virus for residential and commercial buildings. Heat Transfer, 2022, 51, 5996-6026.	1.7	1
29	Numerical Analysis to Evaluate the Effect of Wall Temperature on Skin Friction and Stanton Number for Turbulent Flows over a Flat Plate from Mach 2–8. Arabian Journal for Science and Engineering, 0, , 1.	1.7	0
30	Numerical Modeling of MILD Combustion at High Pressure to Predict the Optimal Operating Conditions. , 2017, , 55-76.		0