
Gregory S Korbutt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2246126/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Islet Transplantation in Seven Patients with Type 1 Diabetes Mellitus Using a Glucocorticoid-Free Immunosuppressive Regimen. New England Journal of Medicine, 2000, 343, 230-238.	27.0	4,772
2	International Trial of the Edmonton Protocol for Islet Transplantation. New England Journal of Medicine, 2006, 355, 1318-1330.	27.0	1,754
3	Long-term survival of neonatal porcine islets in nonhuman primates by targeting costimulation pathways. Nature Medicine, 2006, 12, 304-306.	30.7	439
4	Glucose-Dependent Insulin Release from Genetically Engineered K Cells. Science, 2000, 290, 1959-1962.	12.6	268
5	Ferroptosis-inducing agents compromise in vitro human islet viability and function. Cell Death and Disease, 2018, 9, 595.	6.3	106
6	Development of an Ectopic Site for Islet Transplantation, Using Biodegradable Scaffolds. Tissue Engineering, 2005, 11, 1323-1331.	4.6	97
7	Peroxynitrite Is a Mediator of Cytokine-Induced Destruction of Human Pancreatic Islet \hat{I}^2 Cells. Laboratory Investigation, 2001, 81, 1683-1692.	3.7	78
8	Neonatal Porcine Islets Exhibit Natural Resistance to Hypoxia-Induced Apoptosis. Transplantation, 2006, 82, 945-952.	1.0	66
9	Reversal of Diabetes in Pancreatectomized Pigs After Transplantation of Neonatal Porcine Islets. Diabetes, 2005, 54, 1032-1039.	0.6	61
10	The Degree of Phylogenetic Disparity of Islet Grafts Dictates the Reliance on Indirect CD4 T-Cell Antigen Recognition for Rejection. Diabetes, 2003, 52, 1433-1440.	0.6	40
11	Cotransplantation of Mesenchymal Stem Cells With Neonatal Porcine Islets Improve Graft Function in Diabetic Mice. Diabetes, 2017, 66, 1312-1321.	0.6	38
12	Optimization and Scale-up Isolation and Culture of Neonatal Porcine Islets: Potential for Clinical Application. Cell Transplantation, 2016, 25, 539-547.	2.5	35
13	Potential Application of Neonatal Porcine Islets as Treatment for Type 1 Diabetes: A Review. Annals of the New York Academy of Sciences, 1999, 875, 175-188.	3.8	34
14	Comparison of Successful and Unsuccessful Islet/Sertoli Cell Cotransplant Grafts in Streptozotocin-Induced Diabetic Mice. Cell Transplantation, 2007, 16, 1029-1038.	2.5	34
15	Functional Maturation and In Vitro Differentiation of Neonatal Porcine Islet Grafts. Transplantation, 2018, 102, e413-e423.	1.0	28
16	Justifying clinical trials for porcine islet xenotransplantation. Xenotransplantation, 2015, 22, 336-344.	2.8	27
17	A20 as an immune tolerance factor can determine islet transplant outcomes. JCl Insight, 2019, 4, .	5.0	27
18	Bioengineering a highly vascularized matrix for the ectopic transplantation of islets. Islets, 2013, 5,	1.8	26

216-225.

GREGORY S KORBUTT

#	Article	IF	CITATIONS
19	Bioartificial organs and acceptable risk. Nature Biotechnology, 1999, 17, 1045-1045.	17.5	25
20	Long-Term Graft Function after Allogeneic Islet Transplantation. Cell Transplantation, 2007, 16, 441-446.	2.5	25
21	Co-localized immune protection using dexamethasone-eluting micelles in a murine islet allograft model. American Journal of Transplantation, 2020, 20, 714-725.	4.7	25
22	Chapter 3: Pig islet product manufacturing and release testing. Xenotransplantation, 2009, 16, 223-228.	2.8	22
23	Porcine Islet Xenografts: a Clinical Source of ß-Cell Grafts. Current Diabetes Reports, 2017, 17, 14.	4.2	22
24	Combination of Anti-CD4 with Anti-LFA-1 and Anti-CD154 Monoclonal Antibodies Promotes Long-Term Survival and Function of Neonatal Porcine Islet Xenografts in Spontaneously Diabetic NOD Mice. Cell Transplantation, 2007, 16, 787-798.	2.5	21
25	Delayed functional maturation of neonatal porcine islets in recipients under strict glycemic control. Xenotransplantation, 2007, 14, 333-338.	2.8	21
26	In vitro characterization of neonatal, juvenile, and adult porcine islet oxygen demand, β ell function, and transcriptomes. Xenotransplantation, 2018, 25, e12432.	2.8	20
27	Current State and Evidence of Cellular Encapsulation Strategies in Type 1 Diabetes. , 2020, 10, 839-878.		19
28	<i>In Vitro</i> Maturation of Neonatal Porcine Islets. Annals of the New York Academy of Sciences, 2001, 944, 47-61.	3.8	17
29	Coâ€transplantation of human adiposeâ€derived mesenchymal stem cells with neonatal porcine islets within a prevascularized subcutaneous space augments the xenograft function. Xenotransplantation, 2020, 27, e12581.	2.8	16
30	Reinforcing one-carbon metabolism via folic acid/Folr1 promotes β-cell differentiation. Nature Communications, 2021, 12, 3362.	12.8	15
31	What type of islets should be used?. Xenotransplantation, 2008, 15, 81-82.	2.8	14
32	Fibrin supports subcutaneous neonatal porcine islet transplantation without the need for preâ€vascularization. Xenotransplantation, 2020, 27, e12575.	2.8	11
33	Developing Hybrid Polymer Scaffolds Using Peptide Modified Biopolymers for Cell Implantation. ACS Biomaterials Science and Engineering, 2017, 3, 2215-2222.	5.2	10
34	Xenotransplantation of tannic acidâ€encapsulated neonatal porcine islets decreases proinflammatory innate immune responses. Xenotransplantation, 2021, 28, e12706.	2.8	10
35	Bioabsorption of Subcutaneous Nanofibrous Scaffolds Influences the Engraftment and Function of Neonatal Porcine Islets. Polymers, 2022, 14, 1120.	4.5	9
36	Development and Characterization of a Collagen-Based Matrix for Vascularization and Cell Delivery. BioResearch Open Access, 2015, 4, 188-197.	2.6	5

GREGORY S KORBUTT

#	Article	IF	CITATIONS
37	Selection of a novel AAV2/TNFAIP3 vector for local suppression of islet xenograft inflammation. Xenotransplantation, 2021, 28, e12669.	2.8	4
38	Vascularized Stem Cell–derived β-cell Spheroids: A "Single Step―in the Right Direction for the Treatment of Type 1 Diabetes. Transplantation, 2022, 106, 12-13.	1.0	3
39	Conditioning the liver into a favorable niche for pancreatic islet engraftment. American Journal of Transplantation, 2021, 21, 2927-2928.	4.7	2
40	Impact of donor and prolonged cold ischemia time of neonatal pig pancreas on neonatal pig islet transplant outcome. Xenotransplantation, 2021, 28, e12663.	2.8	0
41	Clinical Translation of Porcine Islets for Treating Type 1 Diabetes. Current Opinion in Endocrine and Metabolic Research, 2022, , 100354.	1.4	0