Hyun-Ji Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2245178/publications.pdf Version: 2024-02-01

HVIIN-II DADK

#	Article	IF	CITATIONS
1	Tissue Adhesive Catecholâ€Modified Hyaluronic Acid Hydrogel for Effective, Minimally Invasive Cell Therapy. Advanced Functional Materials, 2015, 25, 3814-3824.	7.8	351
2	Microengineered human blood–brain barrier platform for understanding nanoparticle transport mechanisms. Nature Communications, 2020, 11, 175.	5.8	236
3	High-resolution acoustophoretic 3D cell patterning to construct functional collateral cylindroids for ischemia therapy. Nature Communications, 2018, 9, 5402.	5.8	116
4	Catechol-Functionalized Hyaluronic Acid Hydrogels Enhance Angiogenesis and Osteogenesis of Human Adipose-Derived Stem Cells in Critical Tissue Defects. Biomacromolecules, 2016, 17, 1939-1948.	2.6	113
5	Paper-based bioactive scaffolds for stem cell-mediated bone tissue engineering. Biomaterials, 2014, 35, 9811-9823.	5.7	93
6	Triboelectric Nanogenerator Accelerates Highly Efficient Nonviral Direct Conversion and In Vivo Reprogramming of Fibroblasts to Functional Neuronal Cells. Advanced Materials, 2016, 28, 7365-7374.	11.1	90
7	Recapitulation of inÂvivo-like paracrine signals of human mesenchymal stem cells for functional neuronal differentiation of human neural stem cells in a 3D microfluidic system. Biomaterials, 2015, 63, 177-188.	5.7	67
8	Nonviral delivery of genetic medicine for therapeutic angiogenesis. Advanced Drug Delivery Reviews, 2012, 64, 40-52.	6.6	64
9	Bio-inspired oligovitronectin-grafted surface for enhanced self-renewal and long-term maintenance of human pluripotent stem cells under feeder-free conditions. Biomaterials, 2015, 50, 127-139.	5.7	59
10	Reconstituting Vascular Microenvironment of Neural Stem Cell Niche in Threeâ€Đimensional Extracellular Matrix. Advanced Healthcare Materials, 2014, 3, 1457-1464.	3.9	58
11	Sonic hedgehog intradermal gene therapy using a biodegradable poly(β-amino esters) nanoparticle to enhance wound healing. Biomaterials, 2012, 33, 9148-9156.	5.7	51
12	Therapeutic angiogenesis using genetically engineered human endothelial cells. Journal of Controlled Release, 2012, 160, 515-524.	4.8	38
13	Multiphoton luminescent graphene quantum dots for in vivo tracking of human adipose-derived stem cells. Nanoscale, 2016, 8, 8512-8519.	2.8	35
14	A Surfaceâ€Tailoring Method for Rapid Nonâ€Thermosensitive Cellâ€Sheet Engineering via Functional Polymer Coatings. Advanced Materials, 2020, 32, e1907225.	11.1	31
15	In Situ Bone Tissue Engineering With an Endogenous Stem Cell Mobilizer and Osteoinductive Nanofibrous Polymeric Scaffolds. Biotechnology Journal, 2017, 12, 1700062.	1.8	30
16	High-density lipoprotein-mimicking nanodiscs carrying peptide for enhanced therapeutic angiogenesis in diabetic hindlimb ischemia. Biomaterials, 2018, 161, 69-80.	5.7	29
17	Inhibition of hepatitis C virus in mouse models by lipidoid nanoparticle-mediated systemic delivery of siRNA against PRK2. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1489-1498.	1.7	26
18	Mussel Adhesionâ€Inspired Reverse Transfection Platform Enhances Osteogenic Differentiation and Bone Formation of Human Adiposeâ€Derived Stem Cells. Small, 2016, 12, 6266-6278.	5.2	25

Hyun-Ji Park

#	Article	IF	CITATIONS
19	Bioengineered Extracellular Membranous Nanovesicles for Efficient Smallâ€Interfering RNA Delivery: Versatile Platforms for Stem Cell Engineering and In Vivo Delivery. Advanced Functional Materials, 2016, 26, 5804-5817.	7.8	24
20	Inhibition of Hepatitis C Virus in Mice by a Small Interfering RNA Targeting a Highly Conserved Sequence in Viral IRES Pseudoknot. PLoS ONE, 2016, 11, e0146710.	1.1	22
21	Cell-permeable mitochondrial ubiquinol–cytochrome c reductase binding protein induces angiogenesis in vitro and in vivo. Cancer Letters, 2015, 366, 52-60.	3.2	20
22	Genetically Engineered Myoblast Sheet for Therapeutic Angiogenesis. Biomacromolecules, 2014, 15, 361-372.	2.6	19
23	Enhanced Selfâ€Renewal and Accelerated Differentiation of Human Fetal Neural Stem Cells Using Graphene Oxide Nanoparticles. Macromolecular Bioscience, 2017, 17, 1600540.	2.1	19
24	Implantable microfluidic device for the formation of three-dimensional vasculature by human endothelial progenitor cells. Biotechnology and Bioprocess Engineering, 2014, 19, 379-385.	1.4	16
25	Nonviral delivery for reprogramming to pluripotency and differentiation. Archives of Pharmacal Research, 2014, 37, 107-119.	2.7	15
26	Galactosylated Lipidoid Nanoparticles for Delivery of Small Interfering RNA to Inhibit Hepatitis C Viral Replication In Vivo. Advanced Healthcare Materials, 2016, 5, 2931-2941.	3.9	15
27	Biomimetic nanovesicle design for cardiac tissue repair. Nanomedicine, 2020, 15, 1873-1896.	1.7	14
28	Antiâ€Atherogenic Effect of Stem Cell Nanovesicles Targeting Disturbed Flow Sites. Small, 2020, 16, e2000012.	5.2	14
29	High-density lipoprotein mimetic nanotherapeutics for cardiovascular and neurodegenerative diseases. Nano Research, 2018, 11, 5130-5143.	5.8	8
30	PEGylated substance P augments therapeutic angiogenesis in diabetic critical limb ischemia. Journal of Industrial and Engineering Chemistry, 2019, 78, 396-409.	2.9	8
31	Engineering Cardiac Small Extracellular Vesicle-Derived Vehicles with Thin-Film Hydration for Customized microRNA Loading. Journal of Cardiovascular Development and Disease, 2021, 8, 135.	0.8	5
32	Angiogenic Type I Collagen Extracellular Matrix Integrated with Recombinant Bacteriophages Displaying Vascular Endothelial Growth Factors. Advanced Healthcare Materials, 2016, 5, 205-212.	3.9	4
33	Comparative computational RNA analysis of cardiac-derived progenitor cells and their extracellular vesicles. Genomics, 2022, 114, 110349.	1.3	4
34	Tissue Reconstruction: Tissue Adhesive Catecholâ€Modified Hyaluronic Acid Hydrogel for Effective, Minimally Invasive Cell Therapy (Adv. Funct. Mater. 25/2015). Advanced Functional Materials, 2015, 25, 3798-3798.	7.8	3
35	Bidirectional Relationship Between Cardiac Extracellular Matrix and Cardiac Cells in Ischemic Heart Disease. Stem Cells, 2021, 39, 1650-1659.	1.4	2
36	Using computational methods to design patient-specific electrospun cardiac patches for pediatric heart failure. Biomaterials, 2022, 283, 121421.	5.7	2

#	Article	IF	CITATIONS
37	Nanovesicles: Bioengineered Extracellular Membranous Nanovesicles for Efficient Small-Interfering RNA Delivery: Versatile Platforms for Stem Cell Engineering and In Vivo Delivery (Adv. Funct. Mater.) Tj ETQq1 1 ().7 84 314 (rg b T /Overlo
38	Bio-inspired polymer surfaces for reverse transfection of siRNA to enhance osteogenic differentiation and bone formation of human adipose-derived stem cells. Frontiers in Bioengineering and Biotechnology, 0, 4, .	2.0	0
39	In Vitro Alzheimer's Disease Modeling Using Stem Cells. , 2020, , 263-285.		0