Blinglin Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2244929/publications.pdf Version: 2024-02-01

RUNCUN SHEN

#	Article	IF	CITATIONS
1	In vivo two-photon fluorescence lifetime imaging microendoscopy based on fiber-bundle. Optics Letters, 2022, 47, 2137-2140.	3.3	3
2	Deep learning autofluorescence-harmonic microscopy. Light: Science and Applications, 2022, 11, 76.	16.6	27
3	Superâ€Multiplex Nonlinear Optical Imaging Unscrambles the Statistical Complexity of Cancer Subtypes and Tumor Microenvironment. Advanced Science, 2022, 9, e2104379.	11.2	13
4	Fast denoising and lossless spectrum extraction in stimulated Raman scattering microscopy. Journal of Biophotonics, 2021, 14, e202100080.	2.3	9
5	Review of Stimulated Raman Scattering Microscopy Techniques and Applications in the Biosciences. Advanced Biology, 2021, 5, e2000184.	2.5	45
6	Label-free whole-colony imaging and metabolic analysis of metastatic pancreatic cancer by an autoregulating flexible optical system. Theranostics, 2020, 10, 1849-1860.	10.0	30
7	Nonlinear Spectralâ€Imaging Study of Second―and Thirdâ€Harmonic Enhancements by Surfaceâ€Lattice Resonances. Advanced Optical Materials, 2020, 8, 1901981.	7.3	10
8	Rapid and Targeted Photoactivation of Ca ²⁺ Channels Mediated by Squaraine To Regulate Intracellular and Intercellular Signaling Processes. Analytical Chemistry, 2020, 92, 8497-8505.	6.5	2
9	Monitoring the endocytosis of bovine serum albumin based on the fluorescence lifetime of small squaraine dye in living cells. Biomedical Optics Express, 2020, 11, 149.	2.9	11
10	Picosecond evolution of pulsed and CW alkali vapor lasers: laser oscillation buildup. Optics Express, 2020, 28, 19482.	3.4	0
11	Quantitative analysis of DNA-Dox diffusion kinetics in a microfluidic device using the fluorescence lifetime imaging microscopy method. Applied Physics Express, 2020, 13, 112005.	2.4	2
12	Simulation and analysis of the time evolution of laser power and temperature in static pulsed XPALs. High Power Laser Science and Engineering, 2019, 7, .	4.6	5
13	Implementation and application of FRET–FLIM technology. Journal of Innovative Optical Health Sciences, 2019, 12, 1930010.	1.0	11
14	Four-Photon Absorption Properties of Mn-Doped ZnSe Quantum Dots. IEEE Photonics Journal, 2019, 11, 1-9.	2.0	2
15	Fluorescence enhancement of small squaraine dye and its two-photon excited fluorescence in long-term near-infrared I&II bioimaging. Optics Express, 2019, 27, 12360.	3.4	23
16	Investigation of pump-to-seed beam matching on output features of Rb and Cs vapor laser amplifiers. Optics and Laser Technology, 2018, 101, 183-188.	4.6	3
17	Modeling of Kinetic and Thermodynamic Processes in a Flowing Exciplex Pumped Alkali Vapor Laser. IEEE Journal of Quantum Electronics, 2017, 53, 1-7.	1.9	7
18	Modeling of a diode four-side pumped cesium vapor laser amplifier with flowing medium. Applied Physics B: Lasers and Optics, 2017, 123, 1.	2.2	4

BLINGLIN SHEN

#	Article	IF	CITATIONS
19	Modeling of Steady-State Temperature Distribution in Diode-Pumped Alkali Vapor Lasers: Analysis of the Experimental Results. IEEE Journal of Quantum Electronics, 2017, 53, 1-7.	1.9	4
20	Three-dimensional kinetic and fluid dynamic modeling and three iterative algorithms for side-pumped alkali vapor lasers. Optics Communications, 2017, 402, 593-599.	2.1	2
21	Theoretical investigation on exciplex pumped alkali vapor lasers with sonic-level gas flow. Journal of Applied Physics, 2017, 122, 023304.	2.5	7
22	Detailed computation on exciplex pumped alkali vapor laser with supersonic flow. Optics Express, 2017, 25, 32745.	3.4	3
23	Modeling of time evolution of power and temperature in single-pulse and multi-pulses diode-pumped alkali vapor lasers. Optics Express, 2017, 25, 13396.	3.4	5
24	Modeling of the static and flowing-gas ring-LD side-pumped alkali vapor amplifiers. Applied Physics B: Lasers and Optics, 2016, 122, 1.	2.2	5
25	Theoretical analysis of the semi-ring and trapezoid LD side-pumped alkali vapor lasers. Optics Communications, 2016, 380, 28-34.	2.1	4
26	Computation of three-dimensional temperature distribution in diode-pumped alkali vapor amplifiers. Optics Communications, 2016, 368, 43-48.	2.1	4
27	Kinetic and fluid dynamic modeling, numerical approaches of flowing-gas diode-pumped alkali vapor amplifiers. Optics Express, 2015, 23, 19500.	3.4	20
28	Modeling of a diode four-side symmetrically pumped alkali vapor amplifier. Optics Express, 2015, 23, 5941.	3.4	12
29	Thermal Effects of High-Power Side-Pumped Alkali Vapor Lasers and the Compensation Method. IEEE Journal of Quantum Electronics, 2014, 50, 1029-1034.	1.9	9
30	Definition and analysis of the lineshape matching coefficient in diode-pumped alkali vapor lasers. Applied Physics B: Lasers and Optics, 2014, 117, 817-822.	2.2	3