Chak K. Chan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2244916/publications.pdf

Version: 2024-02-01

232 papers 16,956 citations

65 h-index 119 g-index

283 all docs

283 docs citations

times ranked

283

11508 citing authors

#	Article	IF	CITATIONS
1	Estimating organic aerosol emissions from cooking in winter over the Pearl River Delta region, China. Environmental Pollution, 2022, 292, 118266.	3.7	5
2	Particulate nitrate photolysis in the atmosphere. Environmental Science Atmospheres, 2022, 2, 111-127.	0.9	29
3	Aqueous secondary organic aerosol formation from the direct photosensitized oxidation of vanillin in the absence and presence of ammonium nitrate. Atmospheric Chemistry and Physics, 2022, 22, 273-293.	1.9	34
4	Photochemical Reactions of Glyoxal during Particulate Ammonium Nitrate Photolysis: Brown Carbon Formation, Enhanced Glyoxal Decay, and Organic Phase Formation. Environmental Science & Decamp; Technology, 2022, 56, 1605-1614.	4.6	29
5	Real-time chemical characterization of single ambient particles at a port city in Chinese domestic emission control area $\hat{a} \in \mathbb{C}$ Impacts of ship emissions on urban air quality. Science of the Total Environment, 2022, 819, 153117.	3.9	15
6	The oxidative potential of fresh and aged elemental carbon-containing airborne particles: a review. Environmental Sciences: Processes and Impacts, 2022, 24, 525-546.	1.7	9
7	Assessing the Nonlinear Effect of Atmospheric Variables on Primary and Oxygenated Organic Aerosol Concentration Using Machine Learning. ACS Earth and Space Chemistry, 2022, 6, 1059-1066.	1.2	8
8	Technical note: Dispersion of cooking-generated aerosols from an urban street canyon. Atmospheric Chemistry and Physics, 2022, 22, 2703-2726.	1.9	4
9	Decay Kinetics and Absorption Changes of Methoxyphenols and Nitrophenols during Nitrate-Mediated Aqueous Photochemical Oxidation at 254 and 313 nm. ACS Earth and Space Chemistry, 2022, 6, 1115-1125.	1.2	6
10	Single-particle Raman spectroscopy for studying physical and chemical processes of atmospheric particles. Atmospheric Chemistry and Physics, 2022, 22, 3017-3044.	1.9	16
11	Reactive Uptake of Monoethanolamine by Sulfuric Acid Particles and Hygroscopicity of Monoethanolaminium Salts. Environmental Science and Technology Letters, 2022, 9, 16-21.	3.9	8
12	Competitive Uptake of Dimethylamine and Trimethylamine against Ammonia on Acidic Particles in Marine Atmospheres. Environmental Science & Environmenta	4.6	10
13	Inactivation of Escherichia coli in droplets at different ambient relative humidities: Effects of phase transition, solute and cell concentrations. Atmospheric Environment, 2022, 280, 119066.	1.9	4
14	Single particle diversity and mixing state of carbonaceous aerosols in Guangzhou, China. Science of the Total Environment, 2021, 754, 142182.	3.9	14
15	Concluding remarks: <i>Faraday Discussion</i> on air quality in megacities. Faraday Discussions, 2021, 226, 617-628.	1.6	2
16	Production of Formate via Oxidation of Glyoxal Promoted by Particulate Nitrate Photolysis. Environmental Science & Environment	4.6	23
17	Nitrate Photolysis in Mixed Sucrose–Nitrate–Sulfate Particles at Different Relative Humidities. Journal of Physical Chemistry A, 2021, 125, 3739-3747.	1.1	14
18	Characteristics, sources and evolution processes of atmospheric organic aerosols at a roadside site in Hong Kong. Atmospheric Environment, 2021, 252, 118298.	1.9	13

#	Article	IF	CITATIONS
19	Biotechnology of Plastic Waste Degradation, Recycling, and Valorization: Current Advances and Future Perspectives. ChemSusChem, 2021, 14, 4103-4114.	3.6	34
20	Biotechnology of Plastic Waste Degradation, Recycling, and Valorization: Current Advances and Future Perspectives. ChemSusChem, 2021, 14, 3981-3981.	3.6	8
21	Disentangling the contribution of the transboundary out-flow from the Asian continent to Tokyo, Japan. Environmental Pollution, 2021, 286, 117280.	3.7	1
22	Primary emissions and secondary production of organic aerosols from heated animal fats. Science of the Total Environment, 2021, 794, 148638.	3.9	2
23	Emissions and Secondary Formation of Air Pollutants from Modern Heavy-Duty Trucks in Real-World Trafficâ€"Chemical Characteristics Using On-Line Mass Spectrometry. Environmental Science & Emp; Technology, 2021, 55, 14515-14525.	4.6	11
24	Investigation into the Phase–Activity Relationship of MnO ₂ Nanomaterials toward Ozoneâ€Assisted Catalytic Oxidation of Toluene. Small, 2021, 17, e2103052.	5.2	51
25	Nitrite/Nitrous Acid Generation from the Reaction of Nitrate and Fe(II) Promoted by Photolysis of Iron–Organic Complexes. Environmental Science & E	4.6	18
26	Enhanced Nitrite Production from the Aqueous Photolysis of Nitrate in the Presence of Vanillic Acid and Implications for the Roles of Light-Absorbing Organics. Environmental Science & Environmental	4.6	25
27	Investigation into the Phase–Activity Relationship of MnO ₂ Nanomaterials toward Ozoneâ€Assisted Catalytic Oxidation of Toluene (Small 50/2021). Small, 2021, 17, .	5.2	1
28	Source apportionment of secondary organic aerosols in the Pearl River Delta region: Contribution from the oxidation of semi-volatile and intermediate volatility primary organic aerosols. Atmospheric Environment, 2020, 222, 117111.	1.9	17
29	Reconciling Measurement and Prediction of Free and Solvated Water in Solution. ACS Omega, 2020, 5, 8754-8765.	1.6	8
30	Multiphase Photochemistry of Iron-Chloride Containing Particles as a Source of Aqueous Chlorine Radicals and Its Effect on Sulfate Production. Environmental Science & Echnology, 2020, 54, 9862-9871.	4.6	17
31	Relative Humidity History Affects Hygroscopicity of Mixed Particles of Glyoxal and Reduced Nitrogenous Species. Environmental Science & Environmental	4.6	10
32	A transition of atmospheric emissions of particles and gases from on-road heavy-duty trucks. Atmospheric Chemistry and Physics, 2020, 20, 1701-1722.	1.9	19
33	Enhanced Sulfate Production by Nitrate Photolysis in the Presence of Halide Ions in Atmospheric Particles. Environmental Science & Environmental Scien	4.6	41
34	Contribution of Particulate Nitrate Photolysis to Heterogeneous Sulfate Formation for Winter Haze in China. Environmental Science and Technology Letters, 2020, 7, 632-638.	3.9	43
35	Application of SERS on the chemical speciation of individual Aitken mode particles after condensational growth. Aerosol Science and Technology, 2020, 54, 826-836.	1.5	3
36	Sources and formation of nucleation mode particles in remote tropical marine atmospheres over the South China Sea and the Northwest Pacific Ocean. Science of the Total Environment, 2020, 735, 139302.	3.9	9

#	Article	IF	Citations
37	Effects of pretreatment temperature on the analysis of sizeâ€fractionated aerosol particles using ToFâ€SIMS. Surface and Interface Analysis, 2020, 52, 264-271.	0.8	O
38	Roadside assessment of a modern city bus fleet: Gaseous and particle emissions. Atmospheric Environment: X, 2019, 3, 100044.	0.8	14
39	Light absorption properties and potential sources of particulate brown carbon in the Pearl River Delta region of China. Atmospheric Chemistry and Physics, 2019, 19, 11669-11685.	1.9	27
40	A review of experimental techniques for aerosol hygroscopicity studies. Atmospheric Chemistry and Physics, 2019, 19, 12631-12686.	1.9	80
41	Exploring the impacts of anthropogenic emission sectors on PM&Itsub>2.5&It/sub> and human health in South and East Asia. Atmospheric Chemistry and Physics, 2019, 19, 11887-11910.	1.9	55
42	Seasonal and annual changes in PAH concentrations in a remote site in the Pacific Ocean. Scientific Reports, 2019, 9, 12591.	1.6	30
43	Effects of Phase State and Phase Separation on Dimethylamine Uptake of Ammonium Sulfate and Ammonium Sulfate–Sucrose Mixed Particles. ACS Earth and Space Chemistry, 2019, 3, 1268-1278.	1.2	10
44	Heterogeneous Oxidation of SO ₂ in Sulfate Production during Nitrate Photolysis at 300 nm: Effect of pH, Relative Humidity, Irradiation Intensity, and the Presence of Organic Compounds. Environmental Science & Environmental Science (amp; Technology, 2019, 53, 8757-8766.	4.6	76
45	Characterization of Aerosol Aging Potentials at Suburban Sites in Northern and Southern China Utilizing a Potential Aerosol Mass (Go:PAM) Reactor and an Aerosol Mass Spectrometer. Journal of Geophysical Research D: Atmospheres, 2019, 124, 5629-5649.	1.2	28
46	Electrospray surface-enhanced Raman spectroscopy (ES-SERS) for studying organic coatings of atmospheric aerosol particles. Aerosol Science and Technology, 2019, 53, 760-770.	1.5	13
47	Effect of Ozone Concentration and Relative Humidity on the Heterogeneous Oxidation of Linoleic Acid Particles by Ozone: An Insight into the Interchangeability of Ozone Concentration and Time. ACS Earth and Space Chemistry, 2019, 3, 779-788.	1.2	19
48	Secondary Organic Aerosol Formation from Urban Roadside Air in Hong Kong. Environmental Science & Envi	4.6	47
49	Positive matrix factorization: A data preprocessing strategy for direct mass spectrometry-based breath analysis. Talanta, 2019, 192, 32-39.	2.9	4
50	Reactive Uptake of Glyoxal by Methylaminium-Containing Salts as a Function of Relative Humidity. ACS Earth and Space Chemistry, 2019, 3, 150-157.	1.2	17
51	Heterogeneous SO ₂ Oxidation in Sulfate Formation by Photolysis of Particulate Nitrate. Environmental Science and Technology Letters, 2019, 6, 86-91.	3.9	116
52	Real time analysis of lead-containing atmospheric particles in Guangzhou during wintertime using single particle aerosol mass spectrometry. Ecotoxicology and Environmental Safety, 2019, 168, 53-63.	2.9	12
53	Reactions of SO ₂ and NH ₃ with epoxy groups on the surface of graphite oxide powder. Physical Chemistry Chemical Physics, 2018, 20, 6431-6439.	1.3	18
54	Real-time Breath Analysis by Using Secondary Nanoelectrospray Ionization Coupled to High Resolution Mass Spectrometry. Journal of Visualized Experiments, $2018, \ldots$	0.2	6

#	Article	IF	Citations
55	Significant Production of Secondary Organic Aerosol from Emissions of Heated Cooking Oils. Environmental Science and Technology Letters, 2018, 5, 32-37.	3.9	69
56	The size-resolved cloud condensation nuclei (CCN) activity and its prediction based on aerosol hygroscopicity and composition in the Pearl Delta River (PRD) region during wintertime 2014. Atmospheric Chemistry and Physics, 2018, 18, 16419-16437.	1.9	29
57	Comparison of secondary organic aerosol formation from toluene on initially wet and dry ammonium sulfate particles at moderate relative humidity. Atmospheric Chemistry and Physics, 2018, 18, 5677-5689.	1.9	33
58	Chemical characteristics of brown carbon in atmospheric particles at a suburban site near Guangzhou, China. Atmospheric Chemistry and Physics, 2018, 18, 16409-16418.	1.9	83
59	Size-resolved effective density of submicron particles during summertime in the rural atmosphere of Beijing, China. Journal of Environmental Sciences, 2018, 73, 69-77.	3.2	26
60	Primary and secondary organic aerosol from heated cooking oil emissions. Atmospheric Chemistry and Physics, 2018, 18, 11363-11374.	1.9	35
61	Viscosity of erythritol and erythritol–water particles as a function of water activity: new results and an intercomparison of techniques for measuring the viscosity of particles. Atmospheric Measurement Techniques, 2018, 11, 4809-4822.	1.2	4
62	Online gas- and particle-phase measurements of organosulfates, organosulfonates and nitrooxy organosulfates in Beijing utilizing a FIGAERO ToF-CIMS. Atmospheric Chemistry and Physics, 2018, 18, 10355-10371.	1.9	62
63	Reactive Uptake of Glyoxal by Ammonium-Containing Salt Particles as a Function of Relative Humidity. Environmental Science & Technology, 2018, 52, 6903-6911.	4.6	45
64	Characteristics and mixing state of amine-containing particles at a rural site in the Pearl River Delta, China. Atmospheric Chemistry and Physics, 2018, 18, 9147-9159.	1.9	31
65	Global Survey of Antibiotic Resistance Genes in Air. Environmental Science & E	4.6	227
66	Formation and Evolution of aqSOA from Aqueous-Phase Reactions of Phenolic Carbonyls: Comparison between Ammonium Sulfate and Ammonium Nitrate Solutions. Environmental Science & Eamp; Technology, 2018, 52, 9215-9224.	4.6	68
67	Real-time chemical characterization of atmospheric particulate matter in China: A review. Atmospheric Environment, 2017, 158, 270-304.	1.9	203
68	Role of oleic acid coating in the heterogeneous uptake of dimethylamine by ammonium sulfate particles. Aerosol Science and Technology, 2017, 51, 988-997.	1.5	16
69	Nanoscale spectroscopic and mechanical characterization of individual aerosol particles using peak force infrared microscopy. Chemical Communications, 2017, 53, 7397-7400.	2.2	16
70	Emission of volatile organic compounds and production of secondary organic aerosol from stir-frying spices. Science of the Total Environment, 2017, 599-600, 1614-1621.	3.9	54
71	Atmospheric particle composition-hygroscopic growth measurements using an in-series hybrid tandem differential mobility analyzer and aerosol mass spectrometer. Aerosol Science and Technology, 2017, 51, 694-703.	1.5	5
72	Reactive Uptake of Dimethylamine by Ammonium Sulfate and Ammonium Sulfate–Sucrose Mixed Particles. Journal of Physical Chemistry A, 2017, 121, 206-215.	1.1	23

#	Article	IF	CITATIONS
73	Defects of clean graphene and sputtered graphite surfaces characterized by time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy. Carbon, 2017, 112, 192-200.	5 . 4	44
74	Mixing state of oxalic acid containing particles in the rural area of Pearl River Delta, China: implications for the formation mechanism of oxalic acid. Atmospheric Chemistry and Physics, 2017, 17, 9519-9533.	1.9	36
75	Impacts of traffic emissions on atmospheric particulate nitrate and organics at a downwind site on the periphery of Guangzhou, China. Atmospheric Chemistry and Physics, 2017, 17, 10245-10258.	1.9	51
76	Diurnal and day-to-day characteristics of ambient particle mass size distributions from HR-ToF-AMS measurements at an urban site and a suburban site in Hong Kong. Atmospheric Chemistry and Physics, 2017, 17, 13605-13624.	1.9	5
77	Electrospray surface-enhanced Raman spectroscopy (ES-SERS) for probing surface chemical compositions of atmospherically relevant particles. Atmospheric Chemistry and Physics, 2017, 17, 14025-14037.	1.9	27
78	Evaluation of traffic exhaust contributions to ambient carbonaceous submicron particulate matter in an urban roadside environment in Hong Kong. Atmospheric Chemistry and Physics, 2017, 17, 15121-15135.	1.9	16
79	Heterogeneous uptake of ammonia and dimethylamine into sulfuric and oxalic acid particles. Atmospheric Chemistry and Physics, 2017, 17, 6323-6339.	1.9	21
80	Formation of secondary organic aerosols from gas-phase emissions of heated cooking oils. Atmospheric Chemistry and Physics, 2017, 17, 7333-7344.	1.9	59
81	The effect of hydroxyl functional groups and molar mass on the viscosity of non-crystalline organic and organic–water particles. Atmospheric Chemistry and Physics, 2017, 17, 8509-8524.	1.9	35
82	Comparison of Aerosol Hygroscopcity, Volatility, and Chemical Composition between a Suburban Site in the Pearl River Delta Region and a Marine Site in Okinawa. Aerosol and Air Quality Research, 2017, 17, 3194-3208.	0.9	23
83	Photochemical smog in China: scientific challenges and implications for air-quality policies. National Science Review, 2016, 3, 401-403.	4.6	58
84	A note on the effects of inorganic seed aerosol on the oxidation state of secondary organic aerosol— <i>α</i> àêPinene ozonolysis. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,476.	1.2	14
85	A field measurement based scaling approach for quantification of major ions, organic carbon, and elemental carbon using a single particle aerosol mass spectrometer. Atmospheric Environment, 2016, 143, 300-312.	1.9	39
86	Particulate matter (PM) episodes at a suburban site in Hong Kong: evolution of PM characteristics and role of photochemistry in secondary aerosol formation. Atmospheric Chemistry and Physics, 2016, 16, 14131-14145.	1.9	20
87	Continuous measurements at the urban roadside in an Asian megacity by Aerosol Chemical Speciation Monitor (ACSM): particulate matter characteristics during fall and winter seasons in Hong Kong. Atmospheric Chemistry and Physics, 2016, 16, 1713-1728.	1.9	36
88	Measurements of non-volatile aerosols with a VTDMA and their correlations with carbonaceous aerosols in Guangzhou, China. Atmospheric Chemistry and Physics, 2016, 16, 8431-8446.	1.9	27
89	Characteristics of submicron particulate matter at the urban roadside in downtown Hong Kongâ \in "Overview of 4 months of continuous highâ \in resolution aerosol mass spectrometer measurements. Journal of Geophysical Research D: Atmospheres, 2015, 120, 7040-7058.	1.2	70
90	Seasonal characteristics of fine particulate matter (PM) based on high-resolution time-of-flight aerosol mass spectrometric (HR-ToF-AMS) measurements at the HKUST Supersite in Hong Kong. Atmospheric Chemistry and Physics, 2015, 15, 37-53.	1.9	108

#	Article	IF	CITATIONS
91	Water Activities and Osmotic Coefficients of Aqueous Solutions of Five Alkylaminium Sulfates and Their Mixtures with H ₂ SO ₄ at 25 ^o C. Aerosol Science and Technology, 2015, 49, 566-579.	1.5	19
92	Comparison of Daytime and Nighttime New Particle Growth at the HKUST Supersite in Hong Kong. Environmental Science & Environme	4.6	38
93	Characterization and source identification of sub-micron particles at the HKUST Supersite in Hong Kong. Science of the Total Environment, 2015, 527-528, 287-296.	3.9	7
94	Clean graphene surface through high temperature annealing. Carbon, 2015, 94, 740-748.	5.4	81
95	Hygroscopic and phase transition properties of alkyl aminium sulfates at low relative humidities. Physical Chemistry Chemical Physics, 2015, 17, 19789-19796.	1.3	26
96	Analysis of Organic Sulfur Compounds in Atmospheric Aerosols at the HKUST Supersite in Hong Kong Using HR-ToF-AMS. Environmental Science & Environment	4.6	57
97	Relative Humidity-Dependent HTDMA Measurements of Ambient Aerosols at the HKUST Supersite in Hong Kong, China. Aerosol Science and Technology, 2015, 49, 643-654.	1.5	24
98	Simultaneous HTDMA and HRâ€ToFâ€AMS measurements at the HKUST Supersite in Hong Kong in 2011. Journal of Geophysical Research D: Atmospheres, 2014, 119, 9864-9883.	1.2	44
99	Diffusion Sampler for Measurement of Acidic Ultrafine Particles in the Atmosphere. Aerosol Science and Technology, 2014, 48, 1236-1246.	1.5	4
100	Characterization of sizeâ€segregated aerosols using ToFâ€SIMS imaging and depth profiling. Surface and Interface Analysis, 2014, 46, 480-488.	0.8	14
101	Performance Evaluation of the Brechtel Mfg. Humidified Tandem Differential Mobility Analyzer (BMI) Tj ETQq1 2014, 48, 969-980.	1 0.78431- 1.5	
102	Size-resolved cloud condensation nuclei (CCN) activity and closure analysis at the HKUST Supersite in Hong Kong. Atmospheric Chemistry and Physics, 2014, 14, 10267-10282.	1.9	69
103	Aqueous-phase photochemical oxidation and direct photolysis of vanillin – a model compound of methoxy phenols from biomass burning. Atmospheric Chemistry and Physics, 2014, 14, 2871-2885.	1.9	73
104	Oligomeric products and formation mechanisms from acid-catalyzed reactions of methyl vinyl ketone on acidic sulfate particles. Journal of Atmospheric Chemistry, 2013, 70, 1-18.	1.4	19
105	Physical and chemical characterization of ambient aerosol by HRâ€ToFâ€AMS at a suburban site in Hong Kong during springtime 2011. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8625-8639.	1.2	56
106	Surface Chemical Composition of Size-Fractionated Urban Walkway Aerosols Determined by X-Ray Photoelectron Spectroscopy. Aerosol Science and Technology, 2013, 47, 1118-1124.	1.5	30
107	Role of the Aerosol Phase State in Ammonia/Amines Exchange Reactions. Environmental Science & Emp; Technology, 2013, 47, 5755-5762.	4.6	53
108	Sizing Characterization of the Fast-Mobility Particle Sizer (FMPS) Against SMPS and HR-ToF-AMS. Aerosol Science and Technology, 2013, 47, 1030-1037.	1.5	37

#	Article	IF	Citations
109	Evaluating the degree of oxygenation of organic aerosol during foggy and hazy days in Hong Kong using high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS). Atmospheric Chemistry and Physics, 2013, 13, 8739-8753.	1.9	66
110	Measuring Ambient Acidic Ultrafine Particles Using Iron Nanofilm Detectors: Method Development. Aerosol Science and Technology, 2012, 46, 521-532.	1.5	9
111	Roles of the Phase State and Water Content in Ozonolysis of Internal Mixtures of Maleic Acid and Ammonium Sulfate Particles. Aerosol Science and Technology, 2012, 46, 781-793.	1.5	10
112	Characterization of Organic Particles from Incense Burning Using an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer. Aerosol Science and Technology, 2012, 46, 654-665.	1.5	46
113	Displacement of Ammonium from Aerosol Particles by Uptake of Triethylamine. Aerosol Science and Technology, 2012, 46, 236-247.	1.5	47
114	Observation of aerosol size distribution and new particle formation at a mountain site in subtropical Hong Kong. Atmospheric Chemistry and Physics, 2012, 12, 9923-9939.	1.9	65
115	Source and formation of secondary particulate matter in PM $<$ sub $>2.5sub> in Asian continental outflow. Journal of Geophysical Research, 2012, 117, .$	3.3	55
116	Evidence of high PM2.5 strong acidity in ammonia-rich atmosphere of Guangzhou, China: Transition in pathways of ambient ammonia to form aerosol ammonium at [NH4+]/[SO42–] = 1.5. Atmospheric Research, 2011, 99, 488-495.	1.8	81
117	Second-generation products contribute substantially to the particle-phase organic material produced by \hat{l}^2 -caryophyllene ozonolysis. Atmospheric Chemistry and Physics, 2011, 11, 121-132.	1.9	70
118	Enhanced Reactive Uptake of Nonanal by Acidic Aerosols in the Presence of Particle-Phase Organics. Aerosol Science and Technology, 2011, 45, 872-883.	1.5	15
119	Quantification of Airborne Elemental Carbon by Digital Imaging. Aerosol Science and Technology, 2011, 45, 581-586.	1.5	9
120	Processâ€Induced Phase Transformation of Berberine Chloride Hydrates. Journal of Pharmaceutical Sciences, 2010, 99, 1942-1954.	1.6	38
121	Growth and Shrinkage of New Particles in the Atmosphere in Hong Kong. Aerosol Science and Technology, 2010, 44, 639-650.	1.5	51
122	Water Content and Phase Transitions in Particles of Inorganic and Organic Species and their Mixtures Using Micro-Raman Spectroscopy. Aerosol Science and Technology, 2010, 44, 269-280.	1.5	62
123	Acid-Catalyzed Condensed-Phase Reactions of Limonene and Terpineol and Their Impacts on Gas-to-Particle Partitioning in the Formation of Organic Aerosols. Environmental Science & Emp; Technology, 2010, 44, 5483-5489.	4.6	11
124	Effects of the Polymorphic Transformation of Glutaric Acid Particles on Their Deliquescence and Hygroscopic Properties. Journal of Physical Chemistry A, 2010, 114, 898-903.	1.1	25
125	Gasâ^'Particle Partitioning of Alcohol Vapors on Organic Aerosols. Environmental Science & Emp; Technology, 2010, 44, 257-262.	4.6	7
126	Phase Transition and Hygroscopic Properties of Internally Mixed Ammonium Sulfate and Adipic Acid (AS-AA) Particles by Optical Microscopic Imaging and Raman Spectroscopy. Aerosol Science and Technology, 2009, 43, 387-399.	1,5	44

#	Article	IF	Citations
127	Managing air quality in a rapidly developing nation: China. Atmospheric Environment, 2009, 43, 79-86.	1.9	228
128	Carbon content of common airborne fungal species and fungal contribution to aerosol organic carbon in a subtropical city. Atmospheric Environment, 2009, 43, 2781-2787.	1.9	10
129	Formulation Development and Bioavailability Evaluation of a Self-Nanoemulsified Drug Delivery System of Oleanolic Acid. AAPS PharmSciTech, 2009, 10, 172-182.	1.5	155
130	The effect of H2O on the reduction of SO2 and NO by CO on La2O2S. Applied Catalysis B: Environmental, 2008, 79, 110-116.	10.8	12
131	Physical characterization of oleanolic acid nonsolvate and solvates prepared by solvent recrystallization. International Journal of Pharmaceutics, 2008, 355, 195-202.	2.6	29
132	Air pollution in mega cities in China. Atmospheric Environment, 2008, 42, 1-42.	1.9	2,181
133	Effects of potassium nitrate on the solid phase transitions of ammonium nitrate particles. Atmospheric Environment, 2008, 42, 313-322.	1.9	30
134	Aerosol thermodynamics of potassium salts, double salts, and water content near the eutectic. Atmospheric Environment, 2008, 42, 3717-3728.	1.9	17
135	Coupling and evaluating gas/particle mass transfer treatments for aerosol simulation and forecast. Journal of Geophysical Research, 2008, 113, .	3.3	44
136	A microscopic study of the effects of particle size and composition of atmospheric aerosols on the corrosion of mild steel. Corrosion Science, 2008, 50, 2927-2933.	3.0	15
137	Partial crystallization and deliquescence of particles containing ammonium sulfate and dicarboxylic acids. Journal of Geophysical Research, 2008, 113, .	3.3	74
138	Understanding hygroscopic growth and phase transformation of aerosols using single particle Raman spectroscopy in an electrodynamic balance. Faraday Discussions, 2008, 137, 245-263.	1.6	82
139	Accretion Reactions of Octanal Catalyzed by Sulfuric Acid: Product Identification, Reaction Pathways, and Atmospheric Implications. Environmental Science & Environmental Science & 2008, 42, 7138-7145.	4.6	16
140	Measurements of the Hygroscopic and Deliquescence Properties of Organic Compounds of Different Solubilities in Water and Their Relationship with Cloud Condensation Nuclei Activities. Environmental Science & Environmental S	4.6	83
141	A Re-Evaluation on the Atmospheric Significance of Octanal Vapor Uptake by Acidic Particles: Roles of Particle Acidity and Gas-Phase Octanal Concentration. Aerosol Science and Technology, 2008, 42, 992-1000.	1.5	10
142	FTIR Characterization of Polymorphic Transformation of Ammonium Nitrate. Aerosol Science and Technology, 2007, 41, 581-588.	1.5	91
143	Correlations of Ambient Temperature and Relative Humidity with Submicron Particle Number Concentration Size Distributions in On-Road Vehicle Plumes. Aerosol Science and Technology, 2007, 41, 692-700.	1.5	16
144	Mass transfer effects on the hygroscopic growth of ammonium sulfate particles with a water-insoluble coating. Atmospheric Environment, 2007, 41, 4423-4433.	1.9	39

#	Article	IF	Citations
145	Heterogeneous Reactions of Linoleic Acid and Linolenic Acid Particles with Ozone:  Reaction Pathways and Changes in Particle Mass, Hygroscopicity, and Morphology. Journal of Physical Chemistry A, 2007, 111, 6285-6295.	1.1	45
146	Formation and Transformation of Metastable Double Salts from the Crystallization of Mixed Ammonium Nitrate and Ammonium Sulfate Particles. Environmental Science & Echnology, 2007, 41, 8077-8083.	4.6	28
147	Size dependence of in situ pH in submicron atmospheric particles in Hong Kong. Atmospheric Environment, 2007, 41, 382-393.	1.9	52
148	Properties of organic matter in PM2.5 at Changdao Island, Chinaâ€"A rural site in the transport path of the Asian continental outflow. Atmospheric Environment, 2007, 41, 1924-1935.	1.9	113
149	Source identification analysis for the airborne bacteria and fungi using a biomarker approach. Atmospheric Environment, 2007, 41, 2831-2843.	1.9	40
150	Size distributions and condensation growth of submicron particles in on-road vehicle plumes in Hong Kong. Atmospheric Environment, 2007, 41, 3328-3338.	1.9	19
151	Single particle Raman spectroscopy for investigating atmospheric heterogeneous reactions of organic aerosols. Atmospheric Environment, 2007, 41, 4611-4621.	1.9	70
152	The role of SO2 in the reduction of NO by CO on La2O2S. Journal of Catalysis, 2007, 245, 301-307.	3.1	15
153	Responses of Ammonium Sulfate Particles Coated with Glutaric Acid to Cyclic Changes in Relative Humidity: Hygroscopicity and Raman Characterization. Environmental Science & E	4.6	52
154	Characteristics of organic matter in PM2.5 in Shanghai. Chemosphere, 2006, 64, 1393-1400.	4.2	132
155	Possible Sampling Artifact in Real Time Particle Size Distributions Related to Sampling Rate. Aerosol Science and Technology, 2006, 40, 1080-1089.	1.5	8
156	Source apportionment of PM2.5 in urban area of Hong Kong. Journal of Hazardous Materials, 2006, 138, 73-85.	6.5	92
157	Ergosterol as a biomarker for the quantification of the fungal biomass in atmospheric aerosols. Atmospheric Environment, 2006, 40, 249-259.	1.9	86
158	Cloud condensation nuclei activation of limited solubility organic aerosol. Atmospheric Environment, 2006, 40, 605-617.	1.9	123
159	Comparison of thermodynamic predictions for in situ pH in PM2.5. Atmospheric Environment, 2006, 40, 2835-2844.	1.9	71
160	A comparative study of the organic matter in PM2.5 from three Chinese megacities in three different climatic zones. Atmospheric Environment, 2006, 40, 3983-3994.	1.9	168
161	Seasonal variations and mass closure analysis of particulate matter in Hong Kong. Science of the Total Environment, 2006, 355, 276-287.	3.9	102
162	Use of Stationary and Mobile Measurements to Study Power Plant Emissions. Journal of the Air and Waste Management Association, 2006, 56, 144-151.	0.9	12

#	Article	IF	Citations
163	Real-Time Observation of the Transformation of Ultrafine Atmospheric Particle Modes. Aerosol Science and Technology, 2005, 39, 831-841.	1.5	44
164	Mass transfer effects in hygroscopic measurements of aerosol particles. Atmospheric Chemistry and Physics, 2005, 5, 2703-2712.	1.9	94
165	Inter-particle and gas-particle interactions in sampling artifacts of PM in filter-based samplers. Atmospheric Environment, 2005, , .	1.9	26
166	Experimental Determination of Solidâ ⁻ Liquid Equilibrium Phase Diagrams for Crystallization-Based Process Synthesis. Industrial & Engineering Chemistry Research, 2005, 44, 3788-3798.	1.8	25
167	Hygroscopicity of Water-Soluble Organic Compounds in Atmospheric Aerosols:  Amino Acids and Biomass Burning Derived Organic Species. Environmental Science & Environmental	4.6	182
168	Investigation of Efflorescence of Inorganic Aerosols Using Fluorescence Spectroscopy. Journal of Physical Chemistry A, 2005, 109, 1042-1048.	1.1	27
169	Impact of meteorology and energy structure on solvent extractable organic compounds of PM2.5 in Beijing, China. Chemosphere, 2005, 61, 623-632.	4.2	53
170	Characterization of dicarboxylic acids in PM2.5 in Hong Kong. Atmospheric Environment, 2004, 38, 963-970.	1.9	110
171	New Directions: Polymorphic transformation of ammonium nitrate in atmospheric aerosols. Atmospheric Environment, 2004, 38, 1387-1388.	1.9	11
172	Characteristics of aerosol acidity in Hong Kong. Atmospheric Environment, 2004, 38, 2965-2974.	1.9	102
173	The 3-hydroxy fatty acids as biomarkers for quantification and characterization of endotoxins and Gram-negative bacteria in atmospheric aerosols in Hong Kong. Atmospheric Environment, 2004, 38, 6307-6317.	1.9	58
174	Application of Fluorescence Spectroscopy To Study the State of Water in Aerosols. Journal of Physical Chemistry A, 2004, 108, 1133-1138.	1.1	25
175	Sampling Artifacts of Acidity and Ionic Species in PM2.5. Environmental Science & Eamp; Technology, 2004, 38, 254-259.	4.6	115
176	Relating Hygroscopic Properties of Magnesium Nitrate to the Formation of Contact Ion Pairs. Journal of Physical Chemistry A, 2004, 108, 1712-1718.	1.1	71
177	Characterization of chemical species in PM2.5 and PM10 aerosols in Hong Kong. Atmospheric Environment, 2003, 37, 31-39.	1.9	311
178	Concentration and chemical composition of PM2.5 in Shanghai for a 1-year period. Atmospheric Environment, 2003, 37, 499-510.	1.9	428
179	The size dependence of chloride depletion in fine and coarse sea-salt particles. Atmospheric Environment, 2003, 37, 743-751.	1.9	90
180	Acidity and concentrations of ionic species of PM2.5 in Hong Kong. Atmospheric Environment, 2003, 37, 1113-1124.	1.9	79

#	Article	IF	Citations
181	Size distributions and formation of ionic species in atmospheric particulate pollutants in Beijing, China: 1â€"inorganic ions. Atmospheric Environment, 2003, 37, 2991-3000.	1.9	171
182	Size distributions and formation of ionic species in atmospheric particulate pollutants in Beijing, China: 2â€"dicarboxylic acids. Atmospheric Environment, 2003, 37, 3001-3007.	1.9	98
183	Performance of a membrane-catalyst for photocatalytic oxidation of volatile organic compounds. Chemical Engineering Science, 2003, 58, 959-962.	1.9	84
184	Reduction of SO2 by CO and COS over La2O2Sâ€"a mechanistic study. Journal of Molecular Catalysis A, 2003, 203, 221-229.	4.8	13
185	Hygroscopic Properties of Two Model Humic-like Substances and Their Mixtures with Inorganics of Atmospheric Importance. Environmental Science & Environmental Science & 2003, 37, 5109-5115.	4.6	130
186	Solar photocatalytic thin film cascade reactor for treatment of benzoic acid containing wastewater. Water Research, 2003, 37, 1125-1135.	5.3	97
187	Observations of Water Monomers in Supersaturated NaClO4, LiClO4, and Mg(ClO4)2 Droplets Using Raman Spectroscopy. Journal of Physical Chemistry A, 2003, 107, 5956-5962.	1.1	123
188	Effect of Thermal Treatment on the Photocatalytic Activity of TiO ₂ Coatings for Photocatalytic Oxidation of Benzoic Acid. Journal of Materials Research, 2002, 17, 1758-1765.	1.2	35
189	The Effects of Organic Species on the Hygroscopic Behaviors of Inorganic Aerosols. Environmental Science & Environmental Scien	4.6	310
190	Continuous Measurements of the Water Activities of Aqueous Droplets of Water-Soluble Organic Compounds. Journal of Physical Chemistry A, 2002, 106, 4566-4572.	1.1	101
191	Understanding the Hygroscopic Properties of Supersaturated Droplets of Metal and Ammonium Sulfate Solutions Using Raman Spectroscopy. Journal of Physical Chemistry A, 2002, 106, 285-292.	1.1	101
192	Continuous Measurements of the Water Activities of the Mg2+â^'Ca2+â^'Na+â^'Cl-â^'NO3-â^'SO42-â^'H2O System. Journal of Chemical & Engineering Data, 2002, 47, 1526-1531.	1.0	13
193	Size distributions and formation of dicarboxylic acids in atmospheric particles. Atmospheric Environment, 2002, 36, 2099-2107.	1.9	179
194	The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmospheric Environment, 2002, 36, 4223-4234.	1.9	550
195	Combined Diffusion Model for the Sorption of Cadmium, Copper, and Zinc lons onto Bone Char. Environmental Science & Environmen	4.6	71
196	Experimental Study of the Sampling Artifact of Chloride Depletion from Collected Sea Salt Aerosols. Environmental Science & En	4.6	41
197	Film-Pore Diffusion Control for the Batch Sorption of Cadmium Ions from Effluent onto Bone Char. Journal of Colloid and Interface Science, 2001, 234, 328-336.	5.0	42
198	The Hygroscopic Properties of Dicarboxylic and Multifunctional Acids:Â Measurements and UNIFAC Predictions. Environmental Science & Environmental Scie	4.6	475

#	Article	IF	Citations
199	The water cycles of water-soluble organic salts of atmospheric importance. Atmospheric Environment, 2001, 35, 1183-1192.	1.9	157
200	The characteristics of PM2.5 in Beijing, China. Atmospheric Environment, 2001, 35, 4959-4970.	1.9	963
201	Hygroscopic Study of Glucose, Citric Acid, and Sorbitol Using an Electrodynamic Balance: Comparison with UNIFAC Predictions. Aerosol Science and Technology, 2001, 35, 753-758.	1.5	70
202	WATER ACTIVITY MEASUREMENTS OF MALONIC ACID AND MALIC ACID. Journal of Aerosol Science, 2001, 32, 921-922.	1.8	0
203	Study of water activities of aerosols of mixtures of sodium and magnesium salts. Atmospheric Environment, 2000, 34, 4795-4803.	1.9	90
204	Size Effects in Gas-Phase Photo-oxidation of Trichloroethylene Using Nanometer-Sized TiO2 Catalysts. Journal of Catalysis, 2000, 192, 185-196.	3.1	341
205	Study of the hygroscopic properties of selected pharmaceutical aerosols using single particle levitation. Pharmaceutical Research, 2000, 17, 1104-1109.	1.7	35
206	Study of water activities of supersaturated aerosols of sodium and ammonium salts. Journal of Geophysical Research, 2000, 105, 11699-11709.	3.3	26
207	Comparison of chloride depletion of sea-salt aerosols in MOUDI and PMDS measurements. Journal of Aerosol Science, 2000, 31, 540-541.	1.8	0
208	Observation of mass transfer limitation in evaporation of single levitated droplets. Journal of Aerosol Science, 2000, 31, 989-990.	1.8	4
209	Study of Contact Ion Pairs of Supersaturated Magnesium Sulfate Solutions Using Raman Scattering of Levitated Single Droplets. Journal of Physical Chemistry A, 2000, 104, 9191-9196.	1.1	101
210	Title is missing!. Journal of Materials Science, 1999, 34, 1523-1531.	1.7	209
211	Size distributions of particulate sulfate, nitrate, and ammonium at a coastal site in Hong Kong. Atmospheric Environment, 1999, 33, 843-853.	1.9	234
212	Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong. Atmospheric Environment, 1999, 33, 3201-3212.	1.9	426
213	Formation of nitrate and non-sea-salt sulfate on coarse particles. Atmospheric Environment, 1999, 33, 4223-4233.	1.9	302
214	A simple method to derive the water activities of highly supersaturated binary electrolyte solutions from ternary solution data. Journal of Geophysical Research, 1999, 104, 30193-30200.	3.3	11
215	The Water Activities of MgCl2, Mg(NO3)2, MgSO4, and Their Mixtures. Aerosol Science and Technology, 1999, 31, 154-169.	1.5	87
216	Effects of Calcination on the Microstructures and Photocatalytic Properties of Nanosized Titanium Dioxide Powders Prepared by Vapor Hydrolysis. Journal of the American Ceramic Society, 1999, 82, 566-572.	1.9	76

#	Article	IF	CITATIONS
217	Micro-Raman Spectroscopic Characterization of Nanosized TiO ₂ Powders Prepared by Vapor Hydrolysis. Journal of Materials Research, 1998, 13, 2602-2609.	1.2	142
218	<i>In Situ</i> Study of Single Aqueous Droplet Solidification of Ceramic Precursors Used for Spray Pyrolysis. Journal of the American Ceramic Society, 1998, 81, 646-648.	1.9	27
219	PARTICULATE MATTER EXPOSURES TO COMMUTERS IN HONG KONG. Particulate Science and Technology, 1997, 15, 341-360.	1.1	2
220	Thermodynamic Properties of Aqueous Aerosols to High Supersaturation: Il—A Model of the System Na+â^'Clâ^'â^'NOâ^'3â^'SO2â^'4â^'H2O at 298.15 K. Aerosol Science and Technology, 1997, 27, 345-366.	1.5	74
221	A Fast Technique for Measuring Water Activity of Atmospheric Aerosols. Aerosol Science and Technology, 1997, 26, 255-268.	1.5	29
222	Thermodynamic Properties of Aqueous Aerosols to High Supersaturation: l—Measurements of Water Activity of the System Na+â^'Clâ^'â^'NOâ^'3â^'SO2â^'4â^'H2O at ~ 298.15 K. Aerosol Science and Technology, 199 27, 324-344.	71.5	58
223	Characteristics of chemical compositions of atmospheric aerosols in Hong Kong: spatial and seasonal distributions. Science of the Total Environment, 1997, 206, 25-37.	3.9	92
224	Water activity of mixed organic and inorganic aerosols. Journal of Aerosol Science, 1997, 28, S77-S78.	1.8	1
225	Size distribution of inorganic aerosols at a coastal site. Journal of Aerosol Science, 1997, 28, S213-S214.	1.8	3
226	Characterization of ultrafine titanium dioxide powders produced by vapor phase hydrolysis of titanium tetraisopropoxide. Journal of Aerosol Science, 1997, 28, S485-S486.	1.8	2
227	Study of hygroscopic properties of aqueous mixtures of disodium fluorescein and sodium chloride using an electrodynamic balance. Pharmaceutical Research, 1997, 14, 1171-1175.	1.7	17
228	Aerosol delivery to non-ventilated infants by metered dose inhaler: Should a valved spacer be used?., 1997, 24, 204-212.		23
229	Thermodynamic Properties of Aqueous (NH4)2SO4 to High Supersaturation as a Function of Temperature. Journal of Chemical & Data, 1995, 40, 1079-1090.	1.0	64
230	Determination of Water Activity in Ammonium Sulfate and Sulfuric Acid Mixtures Using Levitated Single Particles. Aerosol Science and Technology, 1994, 20, 275-284.	1.5	40
231	Water activities of NH4NO3/(NH4)2SO4 solutions. Atmospheric Environment Part A General Topics, 1992, 26, 1661-1673.	1.3	109
232	Resonance structures in elastic and Raman scattering from microspheres. Applied Optics, 1991, 30, 459.	2.1	26