
Chak K. Chan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2244916/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Air pollution in mega cities in China. Atmospheric Environment, 2008, 42, 1-42.	4.1	2,181
2	The characteristics of PM2.5 in Beijing, China. Atmospheric Environment, 2001, 35, 4959-4970.	4.1	963
3	The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmospheric Environment, 2002, 36, 4223-4234.	4.1	550
4	The Hygroscopic Properties of Dicarboxylic and Multifunctional Acids:Â Measurements and UNIFAC Predictions. Environmental Science & Technology, 2001, 35, 4495-4501.	10.0	475
5	Concentration and chemical composition of PM2.5 in Shanghai for a 1-year period. Atmospheric Environment, 2003, 37, 499-510.	4.1	428
6	Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong. Atmospheric Environment, 1999, 33, 3201-3212.	4.1	426
7	Size Effects in Gas-Phase Photo-oxidation of Trichloroethylene Using Nanometer-Sized TiO2 Catalysts. Journal of Catalysis, 2000, 192, 185-196.	6.2	341
8	Characterization of chemical species in PM2.5 and PM10 aerosols in Hong Kong. Atmospheric Environment, 2003, 37, 31-39.	4.1	311
9	The Effects of Organic Species on the Hygroscopic Behaviors of Inorganic Aerosols. Environmental Science & Technology, 2002, 36, 2422-2428.	10.0	310
10	Formation of nitrate and non-sea-salt sulfate on coarse particles. Atmospheric Environment, 1999, 33, 4223-4233.	4.1	302
11	Size distributions of particulate sulfate, nitrate, and ammonium at a coastal site in Hong Kong. Atmospheric Environment, 1999, 33, 843-853.	4.1	234
12	Managing air quality in a rapidly developing nation: China. Atmospheric Environment, 2009, 43, 79-86.	4.1	228
13	Global Survey of Antibiotic Resistance Genes in Air. Environmental Science & Technology, 2018, 52, 10975-10984.	10.0	227
14	Title is missing!. Journal of Materials Science, 1999, 34, 1523-1531.	3.7	209
15	Real-time chemical characterization of atmospheric particulate matter in China: A review. Atmospheric Environment, 2017, 158, 270-304.	4.1	203
16	Hygroscopicity of Water-Soluble Organic Compounds in Atmospheric Aerosols:  Amino Acids and Biomass Burning Derived Organic Species. Environmental Science & Technology, 2005, 39, 1555-1562.	10.0	182
17	Size distributions and formation of dicarboxylic acids in atmospheric particles. Atmospheric Environment, 2002, 36, 2099-2107.	4.1	179
18	Size distributions and formation of ionic species in atmospheric particulate pollutants in Beijing, China: 1—inorganic ions. Atmospheric Environment, 2003, 37, 2991-3000.	4.1	171

#	Article	lF	CITATIONS
19	A comparative study of the organic matter in PM2.5 from three Chinese megacities in three different climatic zones. Atmospheric Environment, 2006, 40, 3983-3994.	4.1	168
20	The water cycles of water-soluble organic salts of atmospheric importance. Atmospheric Environment, 2001, 35, 1183-1192.	4.1	157
21	Formulation Development and Bioavailability Evaluation of a Self-Nanoemulsified Drug Delivery System of Oleanolic Acid. AAPS PharmSciTech, 2009, 10, 172-182.	3.3	155
22	Micro-Raman Spectroscopic Characterization of Nanosized TiO ₂ Powders Prepared by Vapor Hydrolysis. Journal of Materials Research, 1998, 13, 2602-2609.	2.6	142
23	Characteristics of organic matter in PM2.5 in Shanghai. Chemosphere, 2006, 64, 1393-1400.	8.2	132
24	Hygroscopic Properties of Two Model Humic-like Substances and Their Mixtures with Inorganics of Atmospheric Importance. Environmental Science & amp; Technology, 2003, 37, 5109-5115.	10.0	130
25	Observations of Water Monomers in Supersaturated NaClO4, LiClO4, and Mg(ClO4)2 Droplets Using Raman Spectroscopy. Journal of Physical Chemistry A, 2003, 107, 5956-5962.	2.5	123
26	Cloud condensation nuclei activation of limited solubility organic aerosol. Atmospheric Environment, 2006, 40, 605-617.	4.1	123
27	Heterogeneous SO ₂ Oxidation in Sulfate Formation by Photolysis of Particulate Nitrate. Environmental Science and Technology Letters, 2019, 6, 86-91.	8.7	116
28	Sampling Artifacts of Acidity and Ionic Species in PM2.5. Environmental Science & Technology, 2004, 38, 254-259.	10.0	115
29	Properties of organic matter in PM2.5 at Changdao Island, China—A rural site in the transport path of the Asian continental outflow. Atmospheric Environment, 2007, 41, 1924-1935.	4.1	113
30	Characterization of dicarboxylic acids in PM2.5 in Hong Kong. Atmospheric Environment, 2004, 38, 963-970.	4.1	110
31	Water activities of NH4NO3/(NH4)2SO4 solutions. Atmospheric Environment Part A General Topics, 1992, 26, 1661-1673.	1.3	109
32	Seasonal characteristics of fine particulate matter (PM) based on high-resolution time-of-flight aerosol mass spectrometric (HR-ToF-AMS) measurements at the HKUST Supersite in Hong Kong. Atmospheric Chemistry and Physics, 2015, 15, 37-53.	4.9	108
33	Characteristics of aerosol acidity in Hong Kong. Atmospheric Environment, 2004, 38, 2965-2974.	4.1	102
34	Seasonal variations and mass closure analysis of particulate matter in Hong Kong. Science of the Total Environment, 2006, 355, 276-287.	8.0	102
35	Study of Contact Ion Pairs of Supersaturated Magnesium Sulfate Solutions Using Raman Scattering of Levitated Single Droplets. Journal of Physical Chemistry A, 2000, 104, 9191-9196.	2.5	101
36	Continuous Measurements of the Water Activities of Aqueous Droplets of Water-Soluble Organic Compounds. Journal of Physical Chemistry A, 2002, 106, 4566-4572.	2.5	101

CHAK K. CHAN

#	Article	IF	CITATIONS
37	Understanding the Hygroscopic Properties of Supersaturated Droplets of Metal and Ammonium Sulfate Solutions Using Raman Spectroscopy. Journal of Physical Chemistry A, 2002, 106, 285-292.	2.5	101
38	Size distributions and formation of ionic species in atmospheric particulate pollutants in Beijing, China: 2—dicarboxylic acids. Atmospheric Environment, 2003, 37, 3001-3007.	4.1	98
39	Solar photocatalytic thin film cascade reactor for treatment of benzoic acid containing wastewater. Water Research, 2003, 37, 1125-1135.	11.3	97
40	Mass transfer effects in hygroscopic measurements of aerosol particles. Atmospheric Chemistry and Physics, 2005, 5, 2703-2712.	4.9	94
41	Characteristics of chemical compositions of atmospheric aerosols in Hong Kong: spatial and seasonal distributions. Science of the Total Environment, 1997, 206, 25-37.	8.0	92
42	Source apportionment of PM2.5 in urban area of Hong Kong. Journal of Hazardous Materials, 2006, 138, 73-85.	12.4	92
43	FTIR Characterization of Polymorphic Transformation of Ammonium Nitrate. Aerosol Science and Technology, 2007, 41, 581-588.	3.1	91
44	Study of water activities of aerosols of mixtures of sodium and magnesium salts. Atmospheric Environment, 2000, 34, 4795-4803.	4.1	90
45	The size dependence of chloride depletion in fine and coarse sea-salt particles. Atmospheric Environment, 2003, 37, 743-751.	4.1	90
46	The Water Activities of MgCl2, Mg(NO3)2, MgSO4, and Their Mixtures. Aerosol Science and Technology, 1999, 31, 154-169.	3.1	87
47	Ergosterol as a biomarker for the quantification of the fungal biomass in atmospheric aerosols. Atmospheric Environment, 2006, 40, 249-259.	4.1	86
48	Performance of a membrane-catalyst for photocatalytic oxidation of volatile organic compounds. Chemical Engineering Science, 2003, 58, 959-962.	3.8	84
49	Measurements of the Hygroscopic and Deliquescence Properties of Organic Compounds of Different Solubilities in Water and Their Relationship with Cloud Condensation Nuclei Activities. Environmental Science & Technology, 2008, 42, 3602-3608.	10.0	83
50	Chemical characteristics of brown carbon in atmospheric particles at a suburban site near Guangzhou, China. Atmospheric Chemistry and Physics, 2018, 18, 16409-16418.	4.9	83
51	Understanding hygroscopic growth and phase transformation of aerosols using single particle Raman spectroscopy in an electrodynamic balance. Faraday Discussions, 2008, 137, 245-263.	3.2	82
52	Evidence of high PM2.5 strong acidity in ammonia-rich atmosphere of Guangzhou, China: Transition in pathways of ambient ammonia to form aerosol ammonium at [NH4+]/[SO42–] = 1.5. Atmospheric Research, 2011, 99, 488-495.	4.1	81
53	Clean graphene surface through high temperature annealing. Carbon, 2015, 94, 740-748.	10.3	81
54	A review of experimental techniques for aerosol hygroscopicity studies. Atmospheric Chemistry and Physics, 2019, 19, 12631-12686.	4.9	80

#	Article	IF	CITATIONS
55	Acidity and concentrations of ionic species of PM2.5 in Hong Kong. Atmospheric Environment, 2003, 37, 1113-1124.	4.1	79
56	Effects of Calcination on the Microstructures and Photocatalytic Properties of Nanosized Titanium Dioxide Powders Prepared by Vapor Hydrolysis. Journal of the American Ceramic Society, 1999, 82, 566-572.	3.8	76
57	Heterogeneous Oxidation of SO ₂ in Sulfate Production during Nitrate Photolysis at 300 nm: Effect of pH, Relative Humidity, Irradiation Intensity, and the Presence of Organic Compounds. Environmental Science & Technology, 2019, 53, 8757-8766.	10.0	76
58	Thermodynamic Properties of Aqueous Aerosols to High Supersaturation: Il—A Model of the System Na+â''Clâ''â''NOâ''3â''SO2â''4â''H2O at 298.15 K. Aerosol Science and Technology, 1997, 27, 345-366.	3.1	74
59	Partial crystallization and deliquescence of particles containing ammonium sulfate and dicarboxylic acids. Journal of Geophysical Research, 2008, 113, .	3.3	74
60	Aqueous-phase photochemical oxidation and direct photolysis of vanillin – a model compound of methoxy phenols from biomass burning. Atmospheric Chemistry and Physics, 2014, 14, 2871-2885.	4.9	73
61	Combined Diffusion Model for the Sorption of Cadmium, Copper, and Zinc Ions onto Bone Char. Environmental Science & Technology, 2001, 35, 1511-1522.	10.0	71
62	Relating Hygroscopic Properties of Magnesium Nitrate to the Formation of Contact Ion Pairs. Journal of Physical Chemistry A, 2004, 108, 1712-1718.	2.5	71
63	Comparison of thermodynamic predictions for in situ pH in PM2.5. Atmospheric Environment, 2006, 40, 2835-2844.	4.1	71
64	Hygroscopic Study of Glucose, Citric Acid, and Sorbitol Using an Electrodynamic Balance: Comparison with UNIFAC Predictions. Aerosol Science and Technology, 2001, 35, 753-758.	3.1	70
65	Single particle Raman spectroscopy for investigating atmospheric heterogeneous reactions of organic aerosols. Atmospheric Environment, 2007, 41, 4611-4621.	4.1	70
66	Second-generation products contribute substantially to the particle-phase organic material produced by Î ² -caryophyllene ozonolysis. Atmospheric Chemistry and Physics, 2011, 11, 121-132.	4.9	70
67	Characteristics of submicron particulate matter at the urban roadside in downtown Hong Kong—Overview of 4 months of continuous highâ€resolution aerosol mass spectrometer measurements. Journal of Geophysical Research D: Atmospheres, 2015, 120, 7040-7058.	3.3	70
68	Size-resolved cloud condensation nuclei (CCN) activity and closure analysis at the HKUST Supersite in Hong Kong. Atmospheric Chemistry and Physics, 2014, 14, 10267-10282.	4.9	69
69	Significant Production of Secondary Organic Aerosol from Emissions of Heated Cooking Oils. Environmental Science and Technology Letters, 2018, 5, 32-37.	8.7	69
70	Formation and Evolution of aqSOA from Aqueous-Phase Reactions of Phenolic Carbonyls: Comparison between Ammonium Sulfate and Ammonium Nitrate Solutions. Environmental Science & Technology, 2018, 52, 9215-9224.	10.0	68
71	Evaluating the degree of oxygenation of organic aerosol during foggy and hazy days in Hong Kong using high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS). Atmospheric Chemistry and Physics, 2013, 13, 8739-8753.	4.9	66
72	Observation of aerosol size distribution and new particle formation at a mountain site in subtropical Hong Kong. Atmospheric Chemistry and Physics, 2012, 12, 9923-9939.	4.9	65

CHAK K. CHAN

#	Article	IF	CITATIONS
73	Thermodynamic Properties of Aqueous (NH4)2SO4 to High Supersaturation as a Function of Temperature. Journal of Chemical & Engineering Data, 1995, 40, 1079-1090.	1.9	64
74	Water Content and Phase Transitions in Particles of Inorganic and Organic Species and their Mixtures Using Micro-Raman Spectroscopy. Aerosol Science and Technology, 2010, 44, 269-280.	3.1	62
75	Online gas- and particle-phase measurements of organosulfates, organosulfonates and nitrooxy organosulfates in Beijing utilizing a FIGAERO ToF-CIMS. Atmospheric Chemistry and Physics, 2018, 18, 10355-10371.	4.9	62
76	Formation of secondary organic aerosols from gas-phase emissions of heated cooking oils. Atmospheric Chemistry and Physics, 2017, 17, 7333-7344.	4.9	59
77	Thermodynamic Properties of Aqueous Aerosols to High Supersaturation: l—Measurements of Water Activity of the System Na+â^'Clâ´'â~'NOâ^'3â^'SO2â^'4â^'H2O at ~ 298.15 K. Aerosol Science and Technology, 199 27, 324-344.	73.1	58
78	The 3-hydroxy fatty acids as biomarkers for quantification and characterization of endotoxins and Gram-negative bacteria in atmospheric aerosols in Hong Kong. Atmospheric Environment, 2004, 38, 6307-6317.	4.1	58
79	Photochemical smog in China: scientific challenges and implications for air-quality policies. National Science Review, 2016, 3, 401-403.	9.5	58
80	Analysis of Organic Sulfur Compounds in Atmospheric Aerosols at the HKUST Supersite in Hong Kong Using HR-ToF-AMS. Environmental Science & Technology, 2015, 49, 3672-3679.	10.0	57
81	Physical and chemical characterization of ambient aerosol by HRâ€ToFâ€AMS at a suburban site in Hong Kong during springtime 2011. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8625-8639.	3.3	56
82	Source and formation of secondary particulate matter in PM _{2.5} in Asian continental outflow. Journal of Geophysical Research, 2012, 117, .	3.3	55
83	Exploring the impacts of anthropogenic emission sectors on PM _{2.5} and human health in South and East Asia. Atmospheric Chemistry and Physics, 2019, 19, 11887-11910.	4.9	55
84	Emission of volatile organic compounds and production of secondary organic aerosol from stir-frying spices. Science of the Total Environment, 2017, 599-600, 1614-1621.	8.0	54
85	Impact of meteorology and energy structure on solvent extractable organic compounds of PM2.5 in Beijing, China. Chemosphere, 2005, 61, 623-632.	8.2	53
86	Role of the Aerosol Phase State in Ammonia/Amines Exchange Reactions. Environmental Science & Technology, 2013, 47, 5755-5762.	10.0	53
87	Responses of Ammonium Sulfate Particles Coated with Glutaric Acid to Cyclic Changes in Relative Humidity: Hygroscopicity and Raman Characterization. Environmental Science & Technology, 2006, 40, 6983-6989.	10.0	52
88	Size dependence of in situ pH in submicron atmospheric particles in Hong Kong. Atmospheric Environment, 2007, 41, 382-393.	4.1	52
89	Growth and Shrinkage of New Particles in the Atmosphere in Hong Kong. Aerosol Science and Technology, 2010, 44, 639-650.	3.1	51
90	Impacts of traffic emissions on atmospheric particulate nitrate and organics at a downwind site on the periphery of Guangzhou, China. Atmospheric Chemistry and Physics, 2017, 17, 10245-10258.	4.9	51

#	Article	IF	CITATIONS
91	Investigation into the Phase–Activity Relationship of MnO ₂ Nanomaterials toward Ozoneâ€Assisted Catalytic Oxidation of Toluene. Small, 2021, 17, e2103052.	10.0	51
92	Displacement of Ammonium from Aerosol Particles by Uptake of Triethylamine. Aerosol Science and Technology, 2012, 46, 236-247.	3.1	47
93	Secondary Organic Aerosol Formation from Urban Roadside Air in Hong Kong. Environmental Science & Technology, 2019, 53, 3001-3009.	10.0	47
94	Characterization of Organic Particles from Incense Burning Using an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer. Aerosol Science and Technology, 2012, 46, 654-665.	3.1	46
95	Heterogeneous Reactions of Linoleic Acid and Linolenic Acid Particles with Ozone:  Reaction Pathways and Changes in Particle Mass, Hygroscopicity, and Morphology. Journal of Physical Chemistry A, 2007, 111, 6285-6295.	2.5	45
96	Reactive Uptake of Glyoxal by Ammonium-Containing Salt Particles as a Function of Relative Humidity. Environmental Science & Technology, 2018, 52, 6903-6911.	10.0	45
97	Real-Time Observation of the Transformation of Ultrafine Atmospheric Particle Modes. Aerosol Science and Technology, 2005, 39, 831-841.	3.1	44
98	Coupling and evaluating gas/particle mass transfer treatments for aerosol simulation and forecast. Journal of Geophysical Research, 2008, 113, .	3.3	44
99	Phase Transition and Hygroscopic Properties of Internally Mixed Ammonium Sulfate and Adipic Acid (AS-AA) Particles by Optical Microscopic Imaging and Raman Spectroscopy. Aerosol Science and Technology, 2009, 43, 387-399.	3.1	44
100	Simultaneous HTDMA and HRâ€ToFâ€AMS measurements at the HKUST Supersite in Hong Kong in 2011. Journal of Geophysical Research D: Atmospheres, 2014, 119, 9864-9883.	3.3	44
101	Defects of clean graphene and sputtered graphite surfaces characterized by time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy. Carbon, 2017, 112, 192-200.	10.3	44
102	Contribution of Particulate Nitrate Photolysis to Heterogeneous Sulfate Formation for Winter Haze in China. Environmental Science and Technology Letters, 2020, 7, 632-638.	8.7	43
103	Film-Pore Diffusion Control for the Batch Sorption of Cadmium Ions from Effluent onto Bone Char. Journal of Colloid and Interface Science, 2001, 234, 328-336.	9.4	42
104	Experimental Study of the Sampling Artifact of Chloride Depletion from Collected Sea Salt Aerosols. Environmental Science & Technology, 2001, 35, 600-605.	10.0	41
105	Enhanced Sulfate Production by Nitrate Photolysis in the Presence of Halide Ions in Atmospheric Particles. Environmental Science & Technology, 2020, 54, 3831-3839.	10.0	41
106	Determination of Water Activity in Ammonium Sulfate and Sulfuric Acid Mixtures Using Levitated Single Particles. Aerosol Science and Technology, 1994, 20, 275-284.	3.1	40
107	Source identification analysis for the airborne bacteria and fungi using a biomarker approach. Atmospheric Environment, 2007, 41, 2831-2843.	4.1	40
108	Mass transfer effects on the hygroscopic growth of ammonium sulfate particles with a water-insoluble coating. Atmospheric Environment, 2007, 41, 4423-4433.	4.1	39

#	Article	IF	CITATIONS
109	A field measurement based scaling approach for quantification of major ions, organic carbon, and elemental carbon using a single particle aerosol mass spectrometer. Atmospheric Environment, 2016, 143, 300-312.	4.1	39
110	Processâ€Induced Phase Transformation of Berberine Chloride Hydrates. Journal of Pharmaceutical Sciences, 2010, 99, 1942-1954.	3.3	38
111	Comparison of Daytime and Nighttime New Particle Growth at the HKUST Supersite in Hong Kong. Environmental Science & Technology, 2015, 49, 7170-7178.	10.0	38
112	Sizing Characterization of the Fast-Mobility Particle Sizer (FMPS) Against SMPS and HR-ToF-AMS. Aerosol Science and Technology, 2013, 47, 1030-1037.	3.1	37
113	Continuous measurements at the urban roadside in an Asian megacity by Aerosol Chemical Speciation Monitor (ACSM): particulate matter characteristics during fall and winter seasons in Hong Kong. Atmospheric Chemistry and Physics, 2016, 16, 1713-1728.	4.9	36
114	Mixing state of oxalic acid containing particles in the rural area of Pearl River Delta, China: implications for the formation mechanism of oxalic acid. Atmospheric Chemistry and Physics, 2017, 17, 9519-9533.	4.9	36
115	Study of the hygroscopic properties of selected pharmaceutical aerosols using single particle levitation. Pharmaceutical Research, 2000, 17, 1104-1109.	3.5	35
116	Effect of Thermal Treatment on the Photocatalytic Activity of TiO ₂ Coatings for Photocatalytic Oxidation of Benzoic Acid. Journal of Materials Research, 2002, 17, 1758-1765.	2.6	35
117	Performance Evaluation of the Brechtel Mfg. Humidified Tandem Differential Mobility Analyzer (BMI) Tj ETQq1 2014, 48, 969-980.	1 0.784314 3.1	rgBT /Overic 35
118	The effect of hydroxyl functional groups and molar mass on the viscosity of non-crystalline organic and organic–water particles. Atmospheric Chemistry and Physics, 2017, 17, 8509-8524.	4.9	35
119	Primary and secondary organic aerosol from heated cooking oil emissions. Atmospheric Chemistry and Physics, 2018, 18, 11363-11374.	4.9	35
120	Biotechnology of Plastic Waste Degradation, Recycling, and Valorization: Current Advances and Future Perspectives. ChemSusChem, 2021, 14, 4103-4114.	6.8	34
121	Aqueous secondary organic aerosol formation from the direct photosensitized oxidation of vanillin in the absence and presence of ammonium nitrate. Atmospheric Chemistry and Physics, 2022, 22, 273-293.	4.9	34
122	Comparison of secondary organic aerosol formation from toluene on initially wet and dry ammonium sulfate particles at moderate relative humidity. Atmospheric Chemistry and Physics, 2018, 18, 5677-5689.	4.9	33
123	Characteristics and mixing state of amine-containing particles at a rural site in the Pearl River Delta, China. Atmospheric Chemistry and Physics, 2018, 18, 9147-9159.	4.9	31
124	Effects of potassium nitrate on the solid phase transitions of ammonium nitrate particles. Atmospheric Environment, 2008, 42, 313-322.	4.1	30
125	Surface Chemical Composition of Size-Fractionated Urban Walkway Aerosols Determined by X-Ray Photoelectron Spectroscopy. Aerosol Science and Technology, 2013, 47, 1118-1124.	3.1	30
126	Seasonal and annual changes in PAH concentrations in a remote site in the Pacific Ocean. Scientific Reports, 2019, 9, 12591.	3.3	30

#	Article	IF	CITATIONS
127	A Fast Technique for Measuring Water Activity of Atmospheric Aerosols. Aerosol Science and Technology, 1997, 26, 255-268.	3.1	29
128	Physical characterization of oleanolic acid nonsolvate and solvates prepared by solvent recrystallization. International Journal of Pharmaceutics, 2008, 355, 195-202.	5.2	29
129	The size-resolved cloud condensation nuclei (CCN) activity and its prediction based on aerosol hygroscopicity and composition in the Pearl Delta River (PRD) region during wintertime 2014. Atmospheric Chemistry and Physics, 2018, 18, 16419-16437.	4.9	29
130	Particulate nitrate photolysis in the atmosphere. Environmental Science Atmospheres, 2022, 2, 111-127.	2.4	29
131	Photochemical Reactions of Glyoxal during Particulate Ammonium Nitrate Photolysis: Brown Carbon Formation, Enhanced Glyoxal Decay, and Organic Phase Formation. Environmental Science & Technology, 2022, 56, 1605-1614.	10.0	29
132	Formation and Transformation of Metastable Double Salts from the Crystallization of Mixed Ammonium Nitrate and Ammonium Sulfate Particles. Environmental Science & Technology, 2007, 41, 8077-8083.	10.0	28
133	Characterization of Aerosol Aging Potentials at Suburban Sites in Northern and Southern China Utilizing a Potential Aerosol Mass (Go:PAM) Reactor and an Aerosol Mass Spectrometer. Journal of Geophysical Research D: Atmospheres, 2019, 124, 5629-5649.	3.3	28
134	<i>In Situ</i> Study of Single Aqueous Droplet Solidification of Ceramic Precursors Used for Spray Pyrolysis. Journal of the American Ceramic Society, 1998, 81, 646-648.	3.8	27
135	Investigation of Efflorescence of Inorganic Aerosols Using Fluorescence Spectroscopy. Journal of Physical Chemistry A, 2005, 109, 1042-1048.	2.5	27
136	Measurements of non-volatile aerosols with a VTDMA and their correlations with carbonaceous aerosols in Guangzhou, China. Atmospheric Chemistry and Physics, 2016, 16, 8431-8446.	4.9	27
137	Electrospray surface-enhanced Raman spectroscopy (ES-SERS) for probing surface chemical compositions of atmospherically relevant particles. Atmospheric Chemistry and Physics, 2017, 17, 14025-14037.	4.9	27
138	Light absorption properties and potential sources of particulate brown carbon in the Pearl River Delta region of China. Atmospheric Chemistry and Physics, 2019, 19, 11669-11685.	4.9	27
139	Resonance structures in elastic and Raman scattering from microspheres. Applied Optics, 1991, 30, 459.	2.1	26
140	Study of water activities of supersaturated aerosols of sodium and ammonium salts. Journal of Geophysical Research, 2000, 105, 11699-11709.	3.3	26
141	Inter-particle and gas-particle interactions in sampling artifacts of PM in filter-based samplers. Atmospheric Environment, 2005, , .	4.1	26
142	Hygroscopic and phase transition properties of alkyl aminium sulfates at low relative humidities. Physical Chemistry Chemical Physics, 2015, 17, 19789-19796.	2.8	26
143	Size-resolved effective density of submicron particles during summertime in the rural atmosphere of Beijing, China. Journal of Environmental Sciences, 2018, 73, 69-77.	6.1	26
144	Application of Fluorescence Spectroscopy To Study the State of Water in Aerosols. Journal of Physical Chemistry A, 2004, 108, 1133-1138.	2.5	25

#	Article	IF	CITATIONS
145	Experimental Determination of Solidâ`'Liquid Equilibrium Phase Diagrams for Crystallization-Based Process Synthesis. Industrial & Engineering Chemistry Research, 2005, 44, 3788-3798.	3.7	25
146	Effects of the Polymorphic Transformation of Glutaric Acid Particles on Their Deliquescence and Hygroscopic Properties. Journal of Physical Chemistry A, 2010, 114, 898-903.	2.5	25
147	Enhanced Nitrite Production from the Aqueous Photolysis of Nitrate in the Presence of Vanillic Acid and Implications for the Roles of Light-Absorbing Organics. Environmental Science & Technology, 2021, 55, 15694-15704.	10.0	25
148	Relative Humidity-Dependent HTDMA Measurements of Ambient Aerosols at the HKUST Supersite in Hong Kong, China. Aerosol Science and Technology, 2015, 49, 643-654.	3.1	24
149	Aerosol delivery to non-ventilated infants by metered dose inhaler: Should a valved spacer be used?. , 1997, 24, 204-212.		23
150	Reactive Uptake of Dimethylamine by Ammonium Sulfate and Ammonium Sulfate–Sucrose Mixed Particles. Journal of Physical Chemistry A, 2017, 121, 206-215.	2.5	23
151	Production of Formate via Oxidation of Glyoxal Promoted by Particulate Nitrate Photolysis. Environmental Science & Technology, 2021, 55, 5711-5720.	10.0	23
152	Comparison of Aerosol Hygroscopcity, Volatility, and Chemical Composition between a Suburban Site in the Pearl River Delta Region and a Marine Site in Okinawa. Aerosol and Air Quality Research, 2017, 17, 3194-3208.	2.1	23
153	Heterogeneous uptake of ammonia and dimethylamine into sulfuric and oxalic acid particles. Atmospheric Chemistry and Physics, 2017, 17, 6323-6339.	4.9	21
154	Particulate matter (PM) episodes at a suburban site in Hong Kong: evolution of PM characteristics and role of photochemistry in secondary aerosol formation. Atmospheric Chemistry and Physics, 2016, 16, 14131-14145.	4.9	20
155	Size distributions and condensation growth of submicron particles in on-road vehicle plumes in Hong Kong. Atmospheric Environment, 2007, 41, 3328-3338.	4.1	19
156	Oligomeric products and formation mechanisms from acid-catalyzed reactions of methyl vinyl ketone on acidic sulfate particles. Journal of Atmospheric Chemistry, 2013, 70, 1-18.	3.2	19
157	Water Activities and Osmotic Coefficients of Aqueous Solutions of Five Alkylaminium Sulfates and Their Mixtures with H ₂ SO ₄ at 25 ^o C. Aerosol Science and Technology, 2015, 49, 566-579.	3.1	19
158	Effect of Ozone Concentration and Relative Humidity on the Heterogeneous Oxidation of Linoleic Acid Particles by Ozone: An Insight into the Interchangeability of Ozone Concentration and Time. ACS Earth and Space Chemistry, 2019, 3, 779-788.	2.7	19
159	A transition of atmospheric emissions of particles and gases from on-road heavy-duty trucks. Atmospheric Chemistry and Physics, 2020, 20, 1701-1722.	4.9	19
160	Reactions of SO ₂ and NH ₃ with epoxy groups on the surface of graphite oxide powder. Physical Chemistry Chemical Physics, 2018, 20, 6431-6439.	2.8	18
161	Nitrite/Nitrous Acid Generation from the Reaction of Nitrate and Fe(II) Promoted by Photolysis of Iron–Organic Complexes. Environmental Science & Technology, 2021, 55, 15715-15723.	10.0	18
162	Study of hygroscopic properties of aqueous mixtures of disodium fluorescein and sodium chloride using an electrodynamic balance. Pharmaceutical Research, 1997, 14, 1171-1175.	3.5	17

#	Article	IF	CITATIONS
163	Aerosol thermodynamics of potassium salts, double salts, and water content near the eutectic. Atmospheric Environment, 2008, 42, 3717-3728.	4.1	17
164	Reactive Uptake of Glyoxal by Methylaminium-Containing Salts as a Function of Relative Humidity. ACS Earth and Space Chemistry, 2019, 3, 150-157.	2.7	17
165	Source apportionment of secondary organic aerosols in the Pearl River Delta region: Contribution from the oxidation of semi-volatile and intermediate volatility primary organic aerosols. Atmospheric Environment, 2020, 222, 117111.	4.1	17
166	Multiphase Photochemistry of Iron-Chloride Containing Particles as a Source of Aqueous Chlorine Radicals and Its Effect on Sulfate Production. Environmental Science & Technology, 2020, 54, 9862-9871.	10.0	17
167	Correlations of Ambient Temperature and Relative Humidity with Submicron Particle Number Concentration Size Distributions in On-Road Vehicle Plumes. Aerosol Science and Technology, 2007, 41, 692-700.	3.1	16
168	Accretion Reactions of Octanal Catalyzed by Sulfuric Acid: Product Identification, Reaction Pathways, and Atmospheric Implications. Environmental Science & amp; Technology, 2008, 42, 7138-7145.	10.0	16
169	Role of oleic acid coating in the heterogeneous uptake of dimethylamine by ammonium sulfate particles. Aerosol Science and Technology, 2017, 51, 988-997.	3.1	16
170	Nanoscale spectroscopic and mechanical characterization of individual aerosol particles using peak force infrared microscopy. Chemical Communications, 2017, 53, 7397-7400.	4.1	16
171	Evaluation of traffic exhaust contributions to ambient carbonaceous submicron particulate matter in an urban roadside environment in Hong Kong. Atmospheric Chemistry and Physics, 2017, 17, 15121-15135.	4.9	16
172	Single-particle Raman spectroscopy for studying physical and chemical processes of atmospheric particles. Atmospheric Chemistry and Physics, 2022, 22, 3017-3044.	4.9	16
173	The role of SO2 in the reduction of NO by CO on La2O2S. Journal of Catalysis, 2007, 245, 301-307.	6.2	15
174	A microscopic study of the effects of particle size and composition of atmospheric aerosols on the corrosion of mild steel. Corrosion Science, 2008, 50, 2927-2933.	6.6	15
175	Enhanced Reactive Uptake of Nonanal by Acidic Aerosols in the Presence of Particle-Phase Organics. Aerosol Science and Technology, 2011, 45, 872-883.	3.1	15
176	Real-time chemical characterization of single ambient particles at a port city in Chinese domestic emission control area — Impacts of ship emissions on urban air quality. Science of the Total Environment, 2022, 819, 153117.	8.0	15
177	Characterization of sizeâ€segregated aerosols using ToFâ€SIMS imaging and depth profiling. Surface and Interface Analysis, 2014, 46, 480-488.	1.8	14
178	A note on the effects of inorganic seed aerosol on the oxidation state of secondary organic aerosol— <i>α</i> â€Pinene ozonolysis. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,476.	3.3	14
179	Roadside assessment of a modern city bus fleet: Gaseous and particle emissions. Atmospheric Environment: X, 2019, 3, 100044.	1.4	14
180	Single particle diversity and mixing state of carbonaceous aerosols in Guangzhou, China. Science of the Total Environment, 2021, 754, 142182.	8.0	14

#	Article	IF	CITATIONS
181	Nitrate Photolysis in Mixed Sucrose–Nitrate–Sulfate Particles at Different Relative Humidities. Journal of Physical Chemistry A, 2021, 125, 3739-3747.	2.5	14
182	Continuous Measurements of the Water Activities of the Mg2+â^'Ca2+â^'Na+â^'Cl-â^'NO3-â^'SO42-â^'H2O System. Journal of Chemical & Engineering Data, 2002, 47, 1526-1531.	1.9	13
183	Reduction of SO2 by CO and COS over La2O2S—a mechanistic study. Journal of Molecular Catalysis A, 2003, 203, 221-229.	4.8	13
184	Electrospray surface-enhanced Raman spectroscopy (ES-SERS) for studying organic coatings of atmospheric aerosol particles. Aerosol Science and Technology, 2019, 53, 760-770.	3.1	13
185	Characteristics, sources and evolution processes of atmospheric organic aerosols at a roadside site in Hong Kong. Atmospheric Environment, 2021, 252, 118298.	4.1	13
186	Use of Stationary and Mobile Measurements to Study Power Plant Emissions. Journal of the Air and Waste Management Association, 2006, 56, 144-151.	1.9	12
187	The effect of H2O on the reduction of SO2 and NO by CO on La2O2S. Applied Catalysis B: Environmental, 2008, 79, 110-116.	20.2	12
188	Real time analysis of lead-containing atmospheric particles in Guangzhou during wintertime using single particle aerosol mass spectrometry. Ecotoxicology and Environmental Safety, 2019, 168, 53-63.	6.0	12
189	A simple method to derive the water activities of highly supersaturated binary electrolyte solutions from ternary solution data. Journal of Geophysical Research, 1999, 104, 30193-30200.	3.3	11
190	New Directions: Polymorphic transformation of ammonium nitrate in atmospheric aerosols. Atmospheric Environment, 2004, 38, 1387-1388.	4.1	11
191	Acid-Catalyzed Condensed-Phase Reactions of Limonene and Terpineol and Their Impacts on Gas-to-Particle Partitioning in the Formation of Organic Aerosols. Environmental Science & Technology, 2010, 44, 5483-5489.	10.0	11
192	Emissions and Secondary Formation of Air Pollutants from Modern Heavy-Duty Trucks in Real-World Traffic—Chemical Characteristics Using On-Line Mass Spectrometry. Environmental Science & Technology, 2021, 55, 14515-14525.	10.0	11
193	A Re-Evaluation on the Atmospheric Significance of Octanal Vapor Uptake by Acidic Particles: Roles of Particle Acidity and Gas-Phase Octanal Concentration. Aerosol Science and Technology, 2008, 42, 992-1000.	3.1	10
194	Carbon content of common airborne fungal species and fungal contribution to aerosol organic carbon in a subtropical city. Atmospheric Environment, 2009, 43, 2781-2787.	4.1	10
195	Roles of the Phase State and Water Content in Ozonolysis of Internal Mixtures of Maleic Acid and Ammonium Sulfate Particles. Aerosol Science and Technology, 2012, 46, 781-793.	3.1	10
196	Effects of Phase State and Phase Separation on Dimethylamine Uptake of Ammonium Sulfate and Ammonium Sulfate–Sucrose Mixed Particles. ACS Earth and Space Chemistry, 2019, 3, 1268-1278.	2.7	10
197	Relative Humidity History Affects Hygroscopicity of Mixed Particles of Glyoxal and Reduced Nitrogenous Species. Environmental Science & Technology, 2020, 54, 7097-7106.	10.0	10
198	Competitive Uptake of Dimethylamine and Trimethylamine against Ammonia on Acidic Particles in Marine Atmospheres. Environmental Science & Technology, 2022, 56, 5430-5439.	10.0	10

#	Article	IF	CITATIONS
199	Quantification of Airborne Elemental Carbon by Digital Imaging. Aerosol Science and Technology, 2011, 45, 581-586.	3.1	9
200	Measuring Ambient Acidic Ultrafine Particles Using Iron Nanofilm Detectors: Method Development. Aerosol Science and Technology, 2012, 46, 521-532.	3.1	9
201	Sources and formation of nucleation mode particles in remote tropical marine atmospheres over the South China Sea and the Northwest Pacific Ocean. Science of the Total Environment, 2020, 735, 139302.	8.0	9
202	The oxidative potential of fresh and aged elemental carbon-containing airborne particles: a review. Environmental Sciences: Processes and Impacts, 2022, 24, 525-546.	3.5	9
203	Possible Sampling Artifact in Real Time Particle Size Distributions Related to Sampling Rate. Aerosol Science and Technology, 2006, 40, 1080-1089.	3.1	8
204	Reconciling Measurement and Prediction of Free and Solvated Water in Solution. ACS Omega, 2020, 5, 8754-8765.	3.5	8
205	Biotechnology of Plastic Waste Degradation, Recycling, and Valorization: Current Advances and Future Perspectives. ChemSusChem, 2021, 14, 3981-3981.	6.8	8
206	Assessing the Nonlinear Effect of Atmospheric Variables on Primary and Oxygenated Organic Aerosol Concentration Using Machine Learning. ACS Earth and Space Chemistry, 2022, 6, 1059-1066.	2.7	8
207	Reactive Uptake of Monoethanolamine by Sulfuric Acid Particles and Hygroscopicity of Monoethanolaminium Salts. Environmental Science and Technology Letters, 2022, 9, 16-21.	8.7	8
208	Gasâ^'Particle Partitioning of Alcohol Vapors on Organic Aerosols. Environmental Science & Technology, 2010, 44, 257-262.	10.0	7
209	Characterization and source identification of sub-micron particles at the HKUST Supersite in Hong Kong. Science of the Total Environment, 2015, 527-528, 287-296.	8.0	7
210	Real-time Breath Analysis by Using Secondary Nanoelectrospray Ionization Coupled to High Resolution Mass Spectrometry. Journal of Visualized Experiments, 2018, , .	0.3	6
211	Decay Kinetics and Absorption Changes of Methoxyphenols and Nitrophenols during Nitrate-Mediated Aqueous Photochemical Oxidation at 254 and 313 nm. ACS Earth and Space Chemistry, 2022, 6, 1115-1125.	2.7	6
212	Atmospheric particle composition-hygroscopic growth measurements using an in-series hybrid tandem differential mobility analyzer and aerosol mass spectrometer. Aerosol Science and Technology, 2017, 51, 694-703.	3.1	5
213	Diurnal and day-to-day characteristics of ambient particle mass size distributions from HR-ToF-AMS measurements at an urban site and a suburban site in Hong Kong. Atmospheric Chemistry and Physics, 2017, 17, 13605-13624.	4.9	5
214	Estimating organic aerosol emissions from cooking in winter over the Pearl River Delta region, China. Environmental Pollution, 2022, 292, 118266.	7.5	5
215	Observation of mass transfer limitation in evaporation of single levitated droplets. Journal of Aerosol Science, 2000, 31, 989-990.	3.8	4
216	Diffusion Sampler for Measurement of Acidic Ultrafine Particles in the Atmosphere. Aerosol Science and Technology, 2014, 48, 1236-1246.	3.1	4

#	ARTICLE	IF	CITATIONS
217	Viscosity of erythritol and erythritol–water particles as a function of water activity: new results and an intercomparison of techniques for measuring the viscosity of particles. Atmospheric Measurement Techniques, 2018, 11, 4809-4822.	3.1	4
218	Positive matrix factorization: A data preprocessing strategy for direct mass spectrometry-based breath analysis. Talanta, 2019, 192, 32-39.	5.5	4
219	Technical note: Dispersion of cooking-generated aerosols from an urban street canyon. Atmospheric Chemistry and Physics, 2022, 22, 2703-2726.	4.9	4
220	Inactivation of Escherichia coli in droplets at different ambient relative humidities: Effects of phase transition, solute and cell concentrations. Atmospheric Environment, 2022, 280, 119066.	4.1	4
221	Size distribution of inorganic aerosols at a coastal site. Journal of Aerosol Science, 1997, 28, S213-S214.	3.8	3
222	Application of SERS on the chemical speciation of individual Aitken mode particles after condensational growth. Aerosol Science and Technology, 2020, 54, 826-836.	3.1	3
223	PARTICULATE MATTER EXPOSURES TO COMMUTERS IN HONG KONG. Particulate Science and Technology, 1997, 15, 341-360.	2.1	2
224	Characterization of ultrafine titanium dioxide powders produced by vapor phase hydrolysis of titanium tetraisopropoxide. Journal of Aerosol Science, 1997, 28, S485-S486.	3.8	2
225	Concluding remarks: <i>Faraday Discussion</i> on air quality in megacities. Faraday Discussions, 2021, 226, 617-628.	3.2	2
226	Primary emissions and secondary production of organic aerosols from heated animal fats. Science of the Total Environment, 2021, 794, 148638.	8.0	2
227	Water activity of mixed organic and inorganic aerosols. Journal of Aerosol Science, 1997, 28, S77-S78.	3.8	1
228	Disentangling the contribution of the transboundary out-flow from the Asian continent to Tokyo, Japan. Environmental Pollution, 2021, 286, 117280.	7.5	1
229	Investigation into the Phase–Activity Relationship of MnO ₂ Nanomaterials toward Ozoneâ€Assisted Catalytic Oxidation of Toluene (Small 50/2021). Small, 2021, 17, .	10.0	1
230	Comparison of chloride depletion of sea-salt aerosols in MOUDI and PMDS measurements. Journal of Aerosol Science, 2000, 31, 540-541.	3.8	0
231	WATER ACTIVITY MEASUREMENTS OF MALONIC ACID AND MALIC ACID. Journal of Aerosol Science, 2001, 32, 921-922.	3.8	0
232	Effects of pretreatment temperature on the analysis of sizeâ€fractionated aerosol particles using ToFâ€SIMS. Surface and Interface Analysis, 2020, 52, 264-271.	1.8	0