
Carmelo Luci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2244687/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SYK-3BP2 Pathway Activity in Parenchymal and Myeloid Cells Is a Key Pathogenic Factor in Metabolic Steatohepatitis. Cellular and Molecular Gastroenterology and Hepatology, 2021, 13, 173-191.	2.3	5
2	Cutaneous Squamous Cell Carcinoma Development Is Associated with a Temporal Infiltration of ILC1 and NK Cells with Immune Dysfunctions. Journal of Investigative Dermatology, 2021, 141, 2369-2379.	0.3	18
3	MCD diet-induced steatohepatitis generates a diurnal rhythm of associated biomarkers and worsens liver injury in Klf10 deficient mice. Scientific Reports, 2020, 10, 12139.	1.6	14
4	Chronic Inflammation in Non-Alcoholic Steatohepatitis: Molecular Mechanisms and Therapeutic Strategies. Frontiers in Endocrinology, 2020, 11, 597648.	1.5	97
5	Tumor-Associated Neutrophils Dampen Adaptive Immunity and Promote Cutaneous Squamous Cell Carcinoma Development. Cancers, 2020, 12, 1860.	1.7	27
6	Hepatic FNDC5 is a potential local protective factor against Non-Alcoholic Fatty Liver. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165705.	1.8	25
7	Natural Killer Cells and Type 1 Innate Lymphoid Cells Are New Actors in Non-alcoholic Fatty Liver Disease. Frontiers in Immunology, 2019, 10, 1192.	2.2	47
8	The Differential Expression of Cide Family Members is Associated with Nafld Progression from Steatosis to Steatohepatitis. Scientific Reports, 2019, 9, 7501.	1.6	26
9	Innate lymphocyte-induced CXCR3B-mediated melanocyte apoptosis is a potential initiator of T-cell autoreactivity in vitiligo. Nature Communications, 2019, 10, 2178.	5.8	94
10	Bax inhibitorâ€1 protects from nonalcoholic steatohepatitis by limiting inositolâ€requiring enzyme 1 alpha signaling in mice. Hepatology, 2018, 68, 515-532.	3.6	78
11	CD8+ T cells are essential for the effects of enriched environment on hippocampus-dependent behavior, hippocampal neurogenesis and synaptic plasticity. Brain, Behavior, and Immunity, 2018, 69, 235-254.	2.0	44
12	CD44 is a key player in non-alcoholic steatohepatitis. Journal of Hepatology, 2017, 67, 328-338.	1.8	96
13	Sublingual Priming with a HIV gp41-Based Subunit Vaccine Elicits Mucosal Antibodies and Persistent B Memory Responses in Non-Human Primates. Frontiers in Immunology, 2017, 8, 63.	2.2	10
14	NKp46+ Innate Lymphoid Cells Dampen Vaginal CD8 T Cell Responses following Local Immunization with a Cholera Toxin-Based Vaccine. PLoS ONE, 2015, 10, e0143224.	1.1	9
15	Escherichia coli α-Hemolysin Counteracts the Anti-Virulence Innate Immune Response Triggered by the Rho GTPase Activating Toxin CNF1 during Bacteremia. PLoS Pathogens, 2015, 11, e1004732.	2.1	51
16	Antigen-bearing dendritic cells from the sublingual mucosa recirculate to distant systemic lymphoid organs to prime mucosal CD8 T cells. Mucosal Immunology, 2014, 7, 280-291.	2.7	35
17	Mapping of NKp46+ Cells in Healthy Human Lymphoid and Non-Lymphoid Tissues. Frontiers in Immunology, 2012, 3, 344.	2.2	68
18	B cell and T cell immunity in the female genital tract: Potential of distinct mucosal routes of vaccination and role of tissue-associated dendritic cells and natural killer cells. Clinical Microbiology and Infection, 2012, 18, 117-122.	2.8	17

CARMELO LUCI

#	Article	IF	CITATIONS
19	Peripheral natural killer cells exhibit qualitative and quantitative changes in patients with psoriasis and atopic dermatitis. British Journal of Dermatology, 2012, 166, 789-796.	1.4	38
20	Natural killer cells and T cells induce different types ofskin reactions during recall responses to haptens. European Journal of Immunology, 2012, 42, 80-88.	1.6	44
21	Monocytes control natural killer cell differentiation to effector phenotypes. Blood, 2011, 117, 4511-4518.	0.6	80
22	Mechanisms of NK cell activation: CD4+ T cells enter the scene. Cellular and Molecular Life Sciences, 2011, 68, 3457-3467.	2.4	33
23	IFN-λs and BDCA3+/CD8α+dendritic cells: towards the design of novel vaccine adjuvants?. Expert Review of Vaccines, 2011, 10, 159-161.	2.0	4
24	Inflammatory Blood Monocytes Contribute to Tumor Development and Represent a Privileged Target To Improve Host Immunosurveillance. Journal of Immunology, 2010, 185, 7165-7173.	0.4	72
25	Langerhans Cells Prime IL-17–Producing T Cells and Dampen Genital Cytotoxic Responses following Mucosal Immunization. Journal of Immunology, 2010, 184, 4842-4851.	0.4	33
26	Sublingual immunization with an HIV subunit vaccine induces antibodies and cytotoxic T cells in the mouse female genital tract. Vaccine, 2010, 28, 5582-5590.	1.7	53
27	Influence of the transcription factor RORÎ ³ t on the development of NKp46+ cell populations in gut and skin. Nature Immunology, 2009, 10, 75-82.	7.0	507
28	Natural killer cells: Detectors of stress. International Journal of Biochemistry and Cell Biology, 2008, 40, 2335-2340.	1.2	18
29	Tissue-specific differential antitumour effect of molecular forms of fractalkine in a mouse model of metastatic colon cancer. Gut, 2007, 56, 365-372.	6.1	39
30	Sublingual immunization induces broad-based systemic and mucosal immune responses in mice. Vaccine, 2007, 25, 8598-8610.	1.7	178
31	Requirement for Daxx in mature T-cell proliferation and activation. Cell Death and Differentiation, 2007, 14, 795-806.	5.0	10
32	The trafficking of natural killer cells. Immunological Reviews, 2007, 220, 169-182.	2.8	460
33	Transepithelial immunomodulation by cholera toxin and non-toxic derivatives. Vaccine, 2006, 24, S62.	1.7	Ο
34	Imprinting of BALB/c mice with low Leishmania infantum parasite dose markedly protects spleen against high-dose challenge. Vaccine, 2006, 24, 589-596.	1.7	11
35	Dendritic Cell-Mediated Induction of Mucosal Cytotoxic Responses following Intravaginal Immunization with the Nontoxic B Subunit of Cholera Toxin. Journal of Immunology, 2006, 176, 2749-2757.	0.4	58
36	In Vivo Adjuvant-Induced Mobilization and Maturation of Gut Dendritic Cells after Oral Administration of Cholera Toxin. Journal of Immunology, 2004, 173, 5103-5111.	0.4	94