
Jean J Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/224468/publications.pdf Version: 2024-02-01

IFAN I CHEN

#	Article	IF	CITATIONS
1	The Role of Cerebrovascular Reactivity Mapping in Functional MRI: Calibrated fMRI and Resting-State fMRI. Neuromethods, 2022, , 75-88.	0.2	0
2	DKI enhances the sensitivity and interpretability of age-related DTI patterns in the white matter of UK biobank participants. Neurobiology of Aging, 2022, 115, 39-49.	1.5	12
3	Mapping oxidative metabolism in the human brain with calibrated fMRI in health and disease. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1139-1162.	2.4	9
4	Restingâ€state functional magnetic resonance imaging signal variations in aging: The role of neural activity. Human Brain Mapping, 2022, 43, 2880-2897.	1.9	9
5	Insights from auditory cortex for GABA+ magnetic resonance spectroscopy studies of aging. European Journal of Neuroscience, 2022, 56, 4425-4444.	1.2	2
6	Vascular origins of lowâ€frequency oscillations in the cerebrospinal fluid signal in restingâ€state <scp>fMRI</scp> : Interpretation using photoplethysmography. Human Brain Mapping, 2021, 42, 2606-2622.	1.9	16
7	The Role of Cerebrovascular-Reactivity Mapping in Functional MRI: Calibrated fMRI and Resting-State fMRI. Frontiers in Physiology, 2021, 12, 657362.	1.3	20
8	The neuronal associations of respiratory-volume variability in the resting state. NeuroImage, 2021, 230, 117783.	2.1	9
9	Functional Connectivity Between the Posterior Default Mode Network and Parahippocampal Gyrus Is Disrupted in Older Adults with Subjective Cognitive Decline and Correlates with Subjective Memory Ability. Journal of Alzheimer's Disease, 2021, 82, 435-445.	1.2	9
10	Orthogonal moment diffusion tensor decomposition reveals age-related degeneration patterns in complex fiber architecture. Neurobiology of Aging, 2021, 101, 150-159.	1.5	13
11	Increased exhalation to inhalation ratio during breathing enhances highâ€frequency heart rate variability in healthy adults. Psychophysiology, 2021, 58, e13905.	1.2	23
12	Brain structure and function in people recovering from COVID-19 after hospital discharge or self-isolation: a longitudinal observational study protocol. CMAJ Open, 2021, 9, E1114-E1119.	1.1	11
13	Prefrontal GABA Levels Correlate with Memory in Older Adults at High Risk for Alzheimer's Disease. Cerebral Cortex Communications, 2020, 1, tgaa022.	0.7	8
14	Fornix Integrity Is Differently Associated With Cognition in Healthy Aging and Non-amnestic Mild Cognitive Impairment: A Pilot Diffusion Tensor Imaging Study in Thai Older Adults. Frontiers in Aging Neuroscience, 2020, 12, 594002.	1.7	6
15	Editorial: Origins of the Resting-State fMRI Signal. Frontiers in Neuroscience, 2020, 14, 594990.	1.4	3
16	The association between restingâ€state functional magnetic resonance imaging and aortic pulseâ€wave velocity in healthy adults. Human Brain Mapping, 2020, 41, 2121-2135.	1.9	22
17	Central auditory processing in adults with chronic stroke without hearing loss: A magnetoencephalography study. Clinical Neurophysiology, 2020, 131, 1102-1118.	0.7	1
18	Controlling for the effect of arterial-CO2 fluctuations in resting-state fMRI: Comparing end-tidal CO2 clamping and retroactive CO2 correction. NeuroImage, 2020, 216, 116874.	2.1	18

JEAN J CHEN

#	Article	IF	CITATIONS
19	Functional MRI of brain physiology in aging and neurodegenerative diseases. NeuroImage, 2019, 187, 209-225.	2.1	55
20	Intrinsic Frequencies of the Resting-State fMRI Signal: The Frequency Dependence of Functional Connectivity and the Effect of Mode Mixing. Frontiers in Neuroscience, 2019, 13, 900.	1.4	40
21	Functional Magnetic Resonance Imaging. , 2019, , 533-544.		1
22	Characterizing contrast origins and noise contribution in spin-echo EPI BOLD at 3â€⊤. Magnetic Resonance Imaging, 2019, 57, 328-336.	1.0	6
23	MRI techniques to measure arterial and venous cerebral blood volume. NeuroImage, 2019, 187, 17-31.	2.1	75
24	The resting-state fMRI arterial signal predicts differential blood transit time through the brain. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1148-1160.	2.4	60
25	Characterizing the modulation of resting-state fMRI metrics by baseline physiology. NeuroImage, 2018, 173, 72-87.	2.1	36
26	Simultaneous Multislice Resting-State Functional Magnetic Resonance Imaging at 3 Tesla: Slice-Acceleration-Related Biases in Physiological Effects. Brain Connectivity, 2018, 8, 82-93.	0.8	7
27	Neural coupling between contralesional motor and frontoparietal networks correlates with motor ability in individuals with chronic stroke. Journal of the Neurological Sciences, 2018, 384, 21-29.	0.3	27
28	The effects of musicâ€supported therapy on motor, cognitive, and psychosocial functions in chronic stroke. Annals of the New York Academy of Sciences, 2018, 1423, 264-274.	1.8	31
29	Re-examining age-related differences in white matter microstructure with free-water corrected diffusion tensor imaging. Neurobiology of Aging, 2018, 71, 161-170.	1.5	76
30	Cerebrovascular-Reactivity Mapping Using MRI: Considerations for Alzheimer's Disease. Frontiers in Aging Neuroscience, 2018, 10, 170.	1.7	19
31	Variability in stroke motor outcome is explained by structural and functional integrity of the motor system. Scientific Reports, 2018, 8, 9480.	1.6	16
32	Multi-phase passband balanced SSFP fMRI with 50 ms sampling rate at 7 Tesla enables high precision in resolving 100 ms neuronal events. Magnetic Resonance Imaging, 2017, 35, 20-28.	1.0	4
33	The Effect of Low-Frequency Physiological Correction on the Reproducibility and Specificity of Resting-State fMRI Metrics: Functional Connectivity, ALFF, and ReHo. Frontiers in Neuroscience, 2017, 11, 546.	1.4	55
34	Identifying Dysfunctional Cortex: Dissociable Effects of Stroke and Aging on Resting State Dynamics in MEG and fMRI. Frontiers in Aging Neuroscience, 2016, 8, 40.	1.7	51
35	Quantitative mapping of cerebrovascular reactivity using resting-state BOLD fMRI: Validation in healthy adults. NeuroImage, 2016, 138, 147-163.	2.1	84
36	A robust method for suppressing motion-induced coil sensitivity variations during prospective correction of head motion in fMRI. Magnetic Resonance Imaging, 2016, 34, 1206-1219.	1.0	22

JEAN J CHEN

#	Article	IF	CITATIONS
37	Interactions between head motion and coil sensitivity in accelerated fMRI. Journal of Neuroscience Methods, 2016, 270, 46-60.	1.3	14
38	Spin-Echo Resting-State Functional Connectivity in High-Susceptibility Regions: Accuracy, Reliability, and the Impact of Physiological Noise. Brain Connectivity, 2016, 6, 283-297.	0.8	20
39	The association between cerebrovascular reactivity and resting-state fMRI functional connectivity in healthy adults: The influence of basal carbon dioxide. NeuroImage, 2016, 132, 301-313.	2.1	46
40	Physiological fluctuations in white matter are increased inÂAlzheimer's disease and correlate with neuroimaging andÂcognitive biomarkers. Neurobiology of Aging, 2016, 37, 12-18.	1.5	60
41	Suppressing Respiration Effects when Geometric Distortion Is Corrected Dynamically by Phase Labeling for Additional Coordinate Encoding (PLACE) during Functional MRI. PLoS ONE, 2016, 11, e0156750.	1.1	2
42	Metabolic and vascular origins of the BOLD effect: Implications for imaging pathology and resting-state brain function. Journal of Magnetic Resonance Imaging, 2015, 42, 231-246.	1.9	61
43	Mapping the end-tidal CO2 response function in the resting-state BOLD fMRI signal: Spatial specificity, test–retest reliability and effect of fMRI sampling rate. NeuroImage, 2015, 104, 266-277.	2.1	115
44	Comparing cerebrovascular reactivity measured using BOLD and cerebral blood flow MRI: The effect of basal vascular tension on vasodilatory and vasoconstrictive reactivity. NeuroImage, 2015, 110, 110-123.	2.1	76
45	Characterizing Resting-State Brain Function Using Arterial Spin Labeling. Brain Connectivity, 2015, 5, 527-542.	0.8	75
46	Associations of Resting-State fMRI Functional Connectivity with Flow-BOLD Coupling and Regional Vasculature. Brain Connectivity, 2015, 5, 137-146.	0.8	54
47	Non-Gaussian water diffusion in aging white matter. Neurobiology of Aging, 2014, 35, 1412-1421.	1.5	80
48	Dynamic and static contributions of the cerebrovasculature to the resting-state BOLD signal. NeuroImage, 2014, 84, 672-680.	2.1	51
49	The Relationship between Cortical Blood Flow and Sub-Cortical White-Matter Health across the Adult Age Span. PLoS ONE, 2013, 8, e56733.	1.1	51
50	Complex relationships between cerebral blood flow and brain atrophy in early Huntington's disease. NeuroImage, 2012, 59, 1043-1051.	2.1	52
51	Comparison of outcomes of conventional WaveLight® Allegretto Wave® and Technolas® excimer lasers in myopic laser in situ keratomileusis. Clinical Ophthalmology, 2012, 6, 1159.	0.9	19
52	Hippocampal degeneration is associated with temporal and limbic gray matter/white matter tissue contrast in Alzheimer's disease. Neurolmage, 2011, 54, 1795-1802.	2.1	64
53	Age-associated reductions in cerebral blood flow are independent from regional atrophy. NeuroImage, 2011, 55, 468-478.	2.1	309
54	Global Cerebral Oxidative Metabolism during Hypercapnia and Hypocapnia in Humans: Implications for BOLD fMRI. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 1094-1099.	2.4	144

JEAN J CHEN

#	Article	IF	CITATIONS
55	MRI measurement of the BOLD-specific flow–volume relationship during hypercapnia and hypocapnia in humans. NeuroImage, 2010, 53, 383-391.	2.1	113
56	Human whole blood <i>T</i> ₂ relaxometry at 3 Tesla. Magnetic Resonance in Medicine, 2009, 61, 249-254.	1.9	73
57	BOLDâ€specific cerebral blood volume and blood flow changes during neuronal activation in humans. NMR in Biomedicine, 2009, 22, 1054-1062.	1.6	134
58	Origins of the BOLD post-stimulus undershoot. NeuroImage, 2009, 46, 559-568.	2.1	83
59	Cerebral Blood Flow Measurement Using fMRI and PET: A Cross-Validation Study. International Journal of Biomedical Imaging, 2008, 2008, 1-12.	3.0	51
60	The impact of partial-volume effects in dynamic susceptibility contrast magnetic resonance perfusion imaging. Journal of Magnetic Resonance Imaging, 2005, 22, 390-399.	1.9	45
61	Advantages of frequency-domain modeling in dynamic-susceptibility contrast magnetic resonance cerebral blood flow quantification. Magnetic Resonance in Medicine, 2005, 53, 700-707.	1.9	17
62	Reassessing the clinical efficacy of two MR quantitative DSC PWI CBF algorithms following cross-calibration with PET images. Physics in Medicine and Biology, 2005, 50, 1251-1263.	1.6	14
63	Partial volume effect in quantitative magnetic resonance perfusion imaging. , 2004, 2004, 1132-5.		1
64	Performance of Temporal and Spatial Independent Component Analysis in Identifying and Removing Low-Frequency Physiological and Motion Effects in Resting-State fMRI. Frontiers in Neuroscience, 0, 16, .	1.4	5