Yongde Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2244443/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Zeolitic imidazolate framework materials: recent progress in synthesis and applications. Journal of Materials Chemistry A, 2014, 2, 16811-16831.	10.3	753
2	Enhanced Hydrogen Storage Capacity of High Surface Area Zeolite-like Carbon Materials. Journal of the American Chemical Society, 2007, 129, 1673-1679.	13.7	568
3	Synthesis of Ordered Mesoporous Carbon and Nitrogen-Doped Carbon Materials with Graphitic Pore Walls via a Simple Chemical Vapor Deposition Method. Advanced Materials, 2004, 16, 1553-1558.	21.0	351
4	Superior CO ₂ Adsorption Capacity on Nâ€doped, Highâ€Surfaceâ€Area, Microporous Carbons Templated from Zeolite. Advanced Energy Materials, 2011, 1, 678-683.	19.5	328
5	Porous carbon-based materials for hydrogen storage: advancement and challenges. Journal of Materials Chemistry A, 2013, 1, 9365.	10.3	320
6	Templated nanoscale porous carbons. Nanoscale, 2010, 2, 639.	5.6	299
7	Zeolite ZSM-5 with Unique Supermicropores Synthesized Using Mesoporous Carbon as a Template. Advanced Materials, 2004, 16, 727-732.	21.0	279
8	Cobalt sulfide/N,S codoped porous carbon core–shell nanocomposites as superior bifunctional electrocatalysts for oxygen reduction and evolution reactions. Nanoscale, 2015, 7, 20674-20684.	5.6	269
9	Preparation and Hydrogen Storage Properties of Zeolite-Templated Carbon Materials Nanocast via Chemical Vapor Deposition:A Effect of the Zeolite Template and Nitrogen Doping. Journal of Physical Chemistry B, 2006, 110, 18424-18431.	2.6	243
10	Preparation of sulfur-doped microporous carbons for the storage of hydrogen and carbon dioxide. Carbon, 2012, 50, 5543-5553.	10.3	213
11	Ordered Mesoporous Carbon Hollow Spheres Nanocast Using Mesoporous Silica via Chemical Vapor Deposition. Advanced Materials, 2004, 16, 886-891.	21.0	203
12	Generalized and Facile Synthesis Approach to N-Doped Highly Graphitic Mesoporous Carbon Materials. Chemistry of Materials, 2005, 17, 1553-1560.	6.7	193
13	Porous ceramics: Light in weight but heavy in energy and environment technologies. Materials Science and Engineering Reports, 2021, 143, 100589.	31.8	177
14	Hydrogen Storage in High Surface Area Carbons: Experimental Demonstration of the Effects of Nitrogen Doping. Journal of the American Chemical Society, 2009, 131, 16493-16499.	13.7	174
15	Finite-size and surface effects on the glass transition of liquid toluene confined in cylindrical mesopores. Journal of Chemical Physics, 2002, 117, 8966-8972.	3.0	163
16	Cyclohexane and Benzene Confined in MCM-41 and SBA-15: Confinement Effects on Freezing and Melting. Journal of Physical Chemistry B, 2003, 107, 6445-6453.	2.6	159
17	Preparation and carbon dioxide uptake capacity of N-doped porous carbon materials derived from direct carbonization of zeolitic imidazolate framework. Carbon, 2014, 79, 213-226.	10.3	144
18	Mesostructured Hollow Spheres of Graphitic N-Doped Carbon Nanocast from Spherical Mesoporous Silica. Journal of Physical Chemistry B, 2004, 108, 19293-19298.	2.6	138

#	Article	IF	CITATIONS
19	Highly Ordered Mesoporous Silicon Oxynitride Materials as Base Catalysts. Angewandte Chemie - International Edition, 2003, 42, 2639-2644.	13.8	134
20	Confinement of molecular liquids: Consequences on thermodynamic, static and dynamical properties of benzene and toluene. European Physical Journal E, 2003, 12, 19-28.	1.6	132
21	Promoting Effect of Al on SO2â^'4/MxOy (M=Zr, Ti, Fe) Catalysts. Journal of Catalysis, 2000, 196, 104-114.	6.2	125
22	Hollow spheres of crystalline porous metal oxides: A generalized synthesis route via nanocasting with mesoporous carbon hollow shells. Journal of Materials Chemistry, 2005, 15, 3126.	6.7	125
23	Graphene and carbon nanotube (GNT)-reinforced alumina nanocomposites. Journal of the European Ceramic Society, 2015, 35, 179-186.	5.7	118
24	Recent Advances in Metal–Organic Frameworks Derived Nanocomposites for Photocatalytic Applications in Energy and Environment. Advanced Science, 2021, 8, e2100625.	11.2	118
25	Bifunctional Hybrid Mesoporous Organoaluminosilicates with Molecularly Ordered Ethylene Groups. Journal of the American Chemical Society, 2005, 127, 790-798.	13.7	109
26	On the synthesis and characterization of ZSM-5/MCM-48 aluminosilicate composite materials. Journal of Materials Chemistry, 2004, 14, 863.	6.7	107
27	High Surface Area Silicon Carbide Whiskers and Nanotubes Nanocast Using Mesoporous Silica. Chemistry of Materials, 2004, 16, 3877-3884.	6.7	102
28	A simplified synthesis of N-doped zeolite-templated carbons, the control of the level of zeolite-like ordering and its effect on hydrogen storage properties. Carbon, 2011, 49, 844-853.	10.3	94
29	New catalyst of SO 2â^'4 /Al2O3–ZrO2 for n-butane isomerization. Topics in Catalysis, 1998, 6, 101-106.	2.8	93
30	Ultralight, Strong, Three-Dimensional SiC Structures. ACS Nano, 2016, 10, 1871-1876.	14.6	93
31	Tribological performance of Graphene/Carbon nanotube hybrid reinforced Al2O3 composites. Scientific Reports, 2015, 5, 11579.	3.3	91
32	Recent progress in chromogenic research of tungsten oxides towards energy-related applications. Progress in Materials Science, 2017, 88, 281-324.	32.8	89
33	Porous ZnO/Carbon nanocomposites derived from metal organic frameworks for highly efficient photocatalytic applications: A correlational study. Carbon, 2019, 146, 348-363.	10.3	89
34	Ordered Mesoporous Carbon Monoliths:  CVD Nanocasting and Hydrogen Storage Properties. Journal of Physical Chemistry C, 2007, 111, 10035-10039.	3.1	88
35	Preparation of 3D graphene-based architectures and their applications in supercapacitors. Progress in Natural Science: Materials International, 2015, 25, 554-562.	4.4	87
36	Simultaneous Control of Morphology and Porosity in Nanoporous Carbon:  Graphitic Mesoporous Carbon Nanorods and Nanotubules with Tunable Pore Size. Chemistry of Materials, 2006, 18, 140-148.	6.7	85

#	Article	IF	CITATIONS
37	Are mesoporous silicas and aluminosilicas assembled from zeolite seeds inherently hydrothermally stable? Comparative evaluation of MCM-48 materials assembled from zeolite seeds. Journal of Materials Chemistry, 2004, 14, 3427.	6.7	76
38	MOF Derived Porous ZnO/C Nanocomposites for Efficient Dye Photodegradation. ACS Applied Energy Materials, 2018, 1, 4695-4707.	5.1	72
39	On the Hydrothermal Stability of Mesoporous Aluminosilicate MCM-48 Materials. Journal of Physical Chemistry B, 2003, 107, 6954-6960.	2.6	71
40	Bundled tungsten oxide nanowires under thermal processing. Nanotechnology, 2008, 19, 305709.	2.6	69
41	Metal-organic-framework-derived bi-metallic sulfide on N, S-codoped porous carbon nanocomposites as multifunctional electrocatalysts. Journal of Power Sources, 2016, 334, 112-119.	7.8	69
42	Metal-organic-frameworks derived cobalt embedded in various carbon structures as bifunctional electrocatalysts for oxygen reduction and evolution reactions. Scientific Reports, 2017, 7, 5266.	3.3	68
43	Supercritical fluids: A route to palladium-aerogel nanocomposites. Journal of Materials Chemistry, 2004, 14, 1212.	6.7	67
44	Synthesis of mesoporous silica hollow spheres in supercritical CO2/water systems. Journal of Materials Chemistry, 2006, 16, 1751.	6.7	67
45	Structure of liquid and glassy methanol confined in cylindrical pores. Journal of Chemical Physics, 2004, 121, 1466-1473.	3.0	66
46	From graphene to silicon carbide: ultrathin silicon carbide flakes. Nanotechnology, 2016, 27, 075602.	2.6	66
47	Synthesis of siliceous hollow spheres with large mesopore wall structure by supercritical CO2-in-water interface templating. Chemical Communications, 2005, , 210.	4.1	62
48	Phase Diagram and Glass Transition of Confined Benzene. Journal of Physical Chemistry B, 2006, 110, 19735-19744.	2.6	62
49	<i>In situ</i> investigations of the phase change behaviour of tungsten oxide nanostructures. Royal Society Open Science, 2018, 5, 171932.	2.4	61
50	Heteroatom-doped porous carbons with enhanced carbon dioxide uptake and excellent methylene blue adsorption capacities. Microporous and Mesoporous Materials, 2018, 257, 1-8.	4.4	61
51	Controlled in situ synthesis of graphene oxide/zeolitic imidazolate framework composites with enhanced CO ₂ uptake capacity. RSC Advances, 2015, 5, 30464-30471.	3.6	59
52	Atomically homogeneous dispersed ZnO/N-doped nanoporous carbon composites with enhanced CO2 uptake capacities and high efficient organic pollutants removal from water. Carbon, 2015, 95, 113-124.	10.3	58
53	Ordered mesoporous MCM-41 silicon oxynitride solid base materials with high nitrogen content: synthesis, characterisation and catalytic evaluation. Journal of Materials Chemistry, 2004, 14, 2507.	6.7	56
54	Preparation and characterization of tungsten oxynitride nanowires. Journal of Materials Chemistry, 2007, 17, 4436.	6.7	56

#	Article	IF	CITATIONS
55	Hollow shells of high surface area graphitic N-doped carbon composites nanocast using zeolite templates. Microporous and Mesoporous Materials, 2005, 86, 69-80.	4.4	54
56	Aligned N-Doped Carbon Nanotube Bundles Prepared via CVD Using Zeolite Substrates. Chemistry of Materials, 2005, 17, 4502-4508.	6.7	52
57	Molecularly Ordered Ethylene-Bridged Periodic Mesoporous Organosilica Spheres with Tunable Micrometer Sizes. Chemistry of Materials, 2006, 18, 1141-1148.	6.7	52
58	Polyoxometallates@zeolitic-imidazolate-framework derived bimetallic tungsten-cobalt sulfide/porous carbon nanocomposites as efficient bifunctional electrocatalysts for hydrogen and oxygen evolution. Electrochimica Acta, 2020, 330, 135335.	5.2	52
59	A highly efficient and versatile carbon nanotube/ceramic composite filter. Carbon, 2013, 54, 215-223.	10.3	51
60	Selective hydrogenation of nitroarenes over MOF-derived Co@CN catalysts at mild conditions. Molecular Catalysis, 2019, 472, 27-36.	2.0	50
61	A new catalyst for n-butane isomerization: persulfate-modified Al2O3–ZrO2. Applied Catalysis A: General, 1999, 185, 293-300.	4.3	48
62	A cost-effective method for the synthesis of zeolitic imidazolate framework-8 materials from stoichiometric precursors via aqueous ammonia modulation at room temperature. Microporous and Mesoporous Materials, 2014, 193, 7-14.	4.4	48
63	Highly stable mesoporous CeO2/CeS2 nanocomposite as electrode material with improved supercapacitor electrochemical performance. Ceramics International, 2018, 44, 22262-22270.	4.8	47
64	Oxidation of cyclooctane over Mn(TMPyP) porphyrin-exchanged Al,Si-mesoporous molecular sieves of MCM-41 and SBA-15 type. Catalysis Today, 2006, 114, 287-292.	4.4	44
65	Three dimensional (3D) flexible graphene foam/polypyrrole composite: towards highly efficient supercapacitors. RSC Advances, 2015, 5, 3999-4008.	3.6	44
66	An in situ investigation of the thermal decomposition of metal-organic framework NH2-MIL-125 (Ti). Microporous and Mesoporous Materials, 2021, 316, 110957.	4.4	43
67	Facile and high yield synthesis of mesostructured MCM-48 silica crystals. Journal of Materials Chemistry, 2003, 13, 657-659.	6.7	41
68	Aluminosilicate MCM-48 materials with enhanced stability via simple post-synthesis treatment in water. Microporous and Mesoporous Materials, 2004, 68, 1-10.	4.4	41
69	Role of synthesis method on microstructure and mechanical properties of graphene/carbon nanotube toughened Al2O3 nanocomposites. Ceramics International, 2015, 41, 9813-9822.	4.8	41
70	Surface functionalized N-C-TiO2/C nanocomposites derived from metal-organic framework in water vapour for enhanced photocatalytic H2 generation. Journal of Energy Chemistry, 2021, 57, 485-495.	12.9	38
71	Bimetal–organic framework derived multi-heterostructured TiO ₂ /Cu _x O/C nanocomposites with superior photocatalytic H ₂ generation performance. Journal of Materials Chemistry A, 2021, 9, 4103-4116.	10.3	37
72	Periodic mesoporous organosilica mesophases are versatile precursors for the direct preparation of mesoporous silica/carbon composites, carbon and silicon carbide materials. Journal of Materials Chemistry, 2006, 16, 3417.	6.7	36

#	Article	IF	CITATIONS
73	Surfactant Mediated Control of Pore Size and Morphology for Molecularly Ordered Ethylene-Bridged Periodic Mesoporous Organosilica. Journal of Physical Chemistry B, 2006, 110, 3889-3894.	2.6	36
74	Ultra-toughened nylon 12 nanocomposites reinforced with IF-WS ₂ . Nanotechnology, 2014, 25, 325701.	2.6	36
75	High surface area ethylene-bridged mesoporous and supermicroporous organosilica spheres. Microporous and Mesoporous Materials, 2005, 86, 231-242.	4.4	35
76	Ce-Doped bundled ultrafine diameter tungsten oxide nanowires with enhanced electrochromic performance. Nanoscale, 2018, 10, 4718-4726.	5.6	34
77	Enhanced hydrothermal stability of Al-grafted MCM-48 prepared via various alumination routes. Microporous and Mesoporous Materials, 2004, 74, 179-188.	4.4	33
78	Efficient degradation of phenolic wastewaters by a novel Ti/PbO2-Cr-PEDOT electrode with enhanced electrocatalytic activity and chemical stability. Separation and Purification Technology, 2022, 281, 119735.	7.9	33
79	CVD Nanocasting Routes to Zeoliteâ€Templated Carbons for Hydrogen Storage. Chemical Vapor Deposition, 2010, 16, 322-328.	1.3	32
80	Improved hydrogen release from ammonia borane confined in microporous carbon with narrow pore size distribution. Journal of Materials Chemistry A, 2017, 5, 15395-15400.	10.3	31
81	A highly active solid superacid catalyst for n-butane isomerization: persulfate modified Al2O3–ZrO2. Chemical Communications, 1999, , 1899-1900.	4.1	30
82	Crystalline-like Molecularly Ordered Mesoporous Aluminosilicates Derived from Aluminosilicaâ^'Surfactant Mesophases via Benign Template Removal. Journal of Physical Chemistry B, 2006, 110, 9122-9131.	2.6	30
83	Low Temperature Annealing Improves the Electrochromic and Degradation Behavior of Tungsten Oxide (WO _{<i>x</i>}) Thin Films. Journal of Physical Chemistry C, 2017, 121, 20498-20506.	3.1	30
84	Metal-organic framework derived multi-functionalized and co-doped TiO2/C nanocomposites for excellent visible-light photocatalysis. Journal of Materials Science and Technology, 2022, 101, 49-59.	10.7	29
85	Tungsten disulphide nanorattle: A new type of high performance electrocatalyst for hydrogen evolution reaction. Journal of Power Sources, 2016, 307, 593-598.	7.8	28
86	Iron Oxide Nanoneedles Anchored on N-Doped Carbon Nanoarrays as an Electrode for High-Performance Hybrid Supercapacitor. ACS Applied Energy Materials, 2020, 3, 12162-12171.	5.1	28
87	Benzoylation of toluene with benzoyl chloride on Alâ€promoted sulfated solid superacids. Catalysis Letters, 1998, 55, 101-104.	2.6	27
88	Mesoporous MCM-48 Aluminosilica Oxynitrides:  Synthesis and Characterization of Bifunctional Solid Acidâ~'Base Materials. Journal of Physical Chemistry C, 2008, 112, 1455-1462.	3.1	26
89	Bimetallic Fe-Mo sulfide/carbon nanocomposites derived from phosphomolybdic acid encapsulated MOF for efficient hydrogen generation. Journal of Materials Science and Technology, 2021, 84, 76-85.	10.7	26
90	Preparation and gases storage capacities of N-doped porous activated carbon materials derived from mesoporous polymer. Materials Chemistry and Physics, 2013, 141, 318-323.	4.0	25

#	Article	IF	CITATIONS
91	Designing 3D graphene networks via a 3D-printed Ni template. RSC Advances, 2015, 5, 29397-29400.	3.6	25
92	Formation of Molecularly Ordered Layered Mesoporous Silica via Phase Transformation of Silicateâ^'Surfactant Composites. Journal of Physical Chemistry B, 2004, 108, 11361-11367.	2.6	24
93	Patterned growth of tungsten oxide and tungsten oxynitride nanorods from Au-coated W foil. Nanoscale, 2012, 4, 7031.	5.6	23
94	Tracing the Bioavailability of Three-Dimensional Graphene Foam in Biological Tissues. Materials, 2017, 10, 336.	2.9	23
95	Ultralight three-dimensional, carbon-based nanocomposites for thermal energy storage. Journal of Materials Science and Technology, 2020, 36, 70-78.	10.7	23
96	A simple method for the production of highly ordered porous carbon materials with increased hydrogen uptake capacities. International Journal of Hydrogen Energy, 2013, 38, 5039-5052.	7.1	22
97	Graphene-reinforced metal-organic frameworks derived cobalt sulfide/carbon nanocomposites as efficient multifunctional electrocatalysts. Frontiers of Chemical Science and Engineering, 2021, 15, 1487-1499.	4.4	22
98	To stir or not to stir: formation of hierarchical superstructures of molecularly ordered ethylene-bridged periodic mesoporous organosilicas. Journal of Materials Chemistry, 2006, 16, 395-400.	6.7	21
99	How the Toughest Inorganic Fullerene Cages Absorb Shockwave Pressures in a Protective Nanocomposite: Experimental Evidence from Two <i>In Situ</i> Investigations. ACS Nano, 2017, 11, 8114-8121.	14.6	20
100	Magnetic Anchored CoPt Bimetallic Nanoparticles as Selective Hydrogenation Catalyst for Cinnamaldehyde. Catalysis Letters, 2019, 149, 851-859.	2.6	20
101	Multi-walled carbon/IF-WS2 nanoparticles with improved thermal properties. Nanoscale, 2013, 5, 10504.	5.6	19
102	Novel graphitic carbon coated IF-WS ₂ reinforced poly(ether ether ketone) nanocomposites. RSC Advances, 2017, 7, 35265-35273.	3.6	19
103	Continuous Production of IF-WS2 Nanoparticles by a Rotary Process. Inorganics, 2014, 2, 313-333.	2.7	18
104	One-step synthesis of hybrid zeolite with exceptional hydrophobicity to accelerate the interfacial reaction at low temperature. Microporous and Mesoporous Materials, 2019, 280, 195-202.	4.4	18
105	A study of the behaviour of mesoporous silicas in OH/CTABr/H2O systems: phase dependent stabilisation, dissolution or semi-pseudomorphic transformation. Journal of Materials Chemistry, 2003, 13, 3112.	6.7	17
106	Hofmeister anion effect on the formation of ZIF-8 with tuneable morphologies and textural properties from stoichiometric precursors in aqueous ammonia solution. RSC Advances, 2014, 4, 47421-47428.	3.6	17
107	Mesoporous Ce ₂ Zr ₂ O ₇ /PbS Nanocomposite with an Excellent Supercapacitor Electrode Performance and Cyclic Stability. ChemistrySelect, 2019, 4, 655-661.	1.5	17
108	Bimetallic Co–Mo sulfide/carbon composites derived from polyoxometalate encapsulated polydopamine-decorated ZIF nanocubes for efficient hydrogen and oxygen evolution. Nanoscale, 2022, 14, 4726-4739.	5.6	17

#	Article	IF	CITATIONS
109	Enrichment of low concentration methane: an overview of ventilation air methane. Journal of Materials Chemistry A, 2022, 10, 6397-6413.	10.3	17
110	Black-colored ZnO nanowires with enhanced photocatalytic hydrogen evolution. Nanotechnology, 2016, 27, 22LT01.	2.6	15
111	Synthesis of hollow spherical mesoporous N-doped carbon materials with graphitic framework. Studies in Surface Science and Catalysis, 2005, , 565-572.	1.5	14
112	A generic method to synthesise graphitic carbon coated nanoparticles in large scale and their derivative polymer nanocomposites. Scientific Reports, 2017, 7, 11829.	3.3	13
113	Molecularly ordered layered aluminosilicate-surfactant mesophases and their conversion to hydrothermally stable mesoporous aluminosilicates. Microporous and Mesoporous Materials, 2006, 94, 295-303.	4.4	12
114	Fe-Assisted Synthesis of Si Nanowires. Journal of Physical Chemistry C, 2009, 113, 1286-1292.	3.1	12
115	Interface and properties of inorganic fullerene tungsten sulphide nanoparticle reinforced poly (ether ether ketone) nanocomposites. Results in Physics, 2017, 7, 2417-2424.	4.1	12
116	Carbon nanotube reinforced nanocomposites for energy conversion and storage. Journal of Power Sources, 2019, 443, 227277.	7.8	12
117	SiC Nanowire Sponges as Electropressure Sensors. ACS Applied Nano Materials, 2019, 2, 7540-7548.	5.0	12
118	A Systematic Study on the PrepÂaration and Hydrogen Storage of Zeolite 13Xâ€Templated Microporous Carbons. European Journal of Inorganic Chemistry, 2016, 2016, 2152-2158.	2.0	11
119	Highly Ordered Mesoporous Silicon Oxynitride Materials as Base Catalysts. Angewandte Chemie, 2003, 115, 2743-2748.	2.0	10
120	Hydrogen adsorption properties of in-situ synthesized Pt-decorated porous carbons templated from zeolite EMC-2. International Journal of Hydrogen Energy, 2020, 45, 25086-25095.	7.1	9
121	In-situ synthesis of Metal Organic Frameworks (MOFs)-PA12 powders and their laser sintering into hierarchical porous lattice structures. Additive Manufacturing, 2021, 38, 101774.	3.0	9
122	High Efficiency Electrochemical Degradation of Phenol Using a Ti/PbO ₂ -Bi-PTh Composite Electrode. Journal of the Electrochemical Society, 2020, 167, 143506.	2.9	9
123	One-step construction of porous Ni/Co metal/oxide nanocubes for highly efficient oxygen evolution. Electrochemistry Communications, 2018, 93, 191-196.	4.7	8
124	Concentration of unconventional methane resources using microporous membranes: Process assessment and scale-up. Journal of Natural Gas Science and Engineering, 2020, 81, 103420.	4.4	8
125	Porous N-doped carbon with various hollow-cored morphologies nanocast using zeolite templates via chemical vapour deposition. Studies in Surface Science and Catalysis, 2005, 156, 573-580.	1.5	7
126	The Low Dimensional Co-Based Nanorods as a Novel Platform for Selective Hydrogenation of Cinnamaldehyde. Catalysis Letters, 2019, 149, 2906-2915.	2.6	7

#	Article	IF	CITATIONS
127	Multifunctional porous SiC nanowire scaffolds. Journal of the European Ceramic Society, 2021, 41, 3970-3979.	5.7	7
128	Oxygen Vacancies Enhanced NiCo ₂ O ₄ Nanoarrays on Carbon Cloth as Cathode for Flexible Supercapacitors with Excellent Cycling Stability. Batteries and Supercaps, 2022, 5,	4.7	7
129	Microporosity in Mesoporous SBA-15 Supports: A Factor Influencing the Catalytic Performance of Immobilized Metalloporphyrin. Topics in Catalysis, 2009, 52, 1098-1104.	2.8	6
130	Metal Sulfide Nanoparticles Anchored N, S Co-doped Porous Carbon Nanofibers as Highly Efficient Bifunctional Electrocatalysts for Oxygen Reduction/Evolution Reactions. International Journal of Electrochemical Science, 2020, 15, 4869-4883.	1.3	6
131	Chemoselective hydrogenation of cinnamaldehyde over amorphous coordination polymer supported Pt-Co bimetallic nanocatalyst. Chemical Physics Letters, 2022, , 139683.	2.6	6
132	Self-Assembled Ultralarge Millimeter-Sized Graphitic Carbon Rods Grown on Mesoporous Silica Substrate. Chemistry of Materials, 2007, 19, 6317-6322.	6.7	5
133	Lanthanide-doped W 18 O 49 nanowires: Synthesis, structure and optical properties. Materials Letters, 2018, 214, 232-235.	2.6	5
134	The preparation of SiC nanowires reinforced porous carbon nanocomposites by a simple method. Materials Chemistry and Physics, 2018, 219, 258-262.	4.0	5
135	Carbon Encapsulated WS2 Nanocomposites Derived from ZIF-67@WS2 Core-Shell Nanoparticles and their electrocatalytic applications. International Journal of Electrochemical Science, 2020, 15, 12370-12379.	1.3	5
136	Reply: Mesoporous Zeolite ZSM-5 Nanocast from Mesoporous Carbon Templates. Advanced Materials, 2005, 17, 2791-2792.	21.0	4
137	Growth of Bamboo-Shaped Carbon Nanostructures on Carbon Fibre by Chemical Vapor Deposition. Applied Mechanics and Materials, 0, 465-466, 927-931.	0.2	3
138	Mild-temperature hydrogenation of carbonyls over Co-ZIF-9 derived Co-ZIF-x nanoparticle catalyst. Molecular Catalysis, 2020, 495, 111149.	2.0	3
139	Piezoelectric Property of Electrospun PVDF Nanofibers as Linking Tips of Artificial-Hair-Cell Structures in Cochlea. Nanomaterials, 2022, 12, 1466.	4.1	3
140	Mesostructured aluminosilica oxynitrides: solid acid-base materials prepared via post-synthesis grafting routes. Studies in Surface Science and Catalysis, 2005, 156, 125-132.	1.5	2
141	THERMAL PROCESSING OF BUNDLED TUNGSTEN OXIDE NANOWIRES. International Journal of Modern Physics B, 2009, 23, 1541-1547.	2.0	2
142	Effect of low temperature treatment of tungsten oxide (WOx) thin films on the electrochromic and degradation behavior. , 2016, , .		2
143	One-step self-assembly of lamellar MWW crystals through intergrowth driven by centrifugal force to form hollownest structure Zeolite. Microporous and Mesoporous Materials, 2021, 312, 110788.	4.4	2
144	Preparation of versatile silica/carbon nanocomposites via carbonization of ethyl-bridged periodic mesoporous organosilica. Studies in Surface Science and Catalysis, 2007, , 393-396.	1.5	1

#	Article	IF	CITATIONS
145	Facile low temperature synthesis of primary amine templated super-microporous aluminosilicates. Studies in Surface Science and Catalysis, 2007, , 519-522.	1.5	0
146	Bio-imaging of lung diseases using luminescent graphene nanocrystals. , 2016, , .		0
147	Permeability studies on 3D Ni foam/graphene composites. Journal Physics D: Applied Physics, 2017, 50, 385303.	2.8	0