Melkam A Kebede

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2244374/publications.pdf Version: 2024-02-01

MELKAM A KEREDE

#	Article	IF	CITATIONS
1	Regulated Versus Constitutive Secretion $\hat{a} \in \hat{~}$ A Major Form of Intercellular Communication. , 2022, , .		Ο
2	Enhanced structure and function of human pluripotent stem cell-derived beta-cells cultured on extracellular matrix. Stem Cells Translational Medicine, 2021, 10, 492-505.	1.6	19
3	Pancreatic β-Cell–Specific Deletion of VPS41 Causes Diabetes Due to Defects in Insulin Secretion. Diabetes, 2021, 70, 436-448.	0.3	10
4	Isolation and Proteomics of the Insulin Secretory Granule. Metabolites, 2021, 11, 288.	1.3	13
5	Machine Learning Algorithms, Applied to Intact Islets of Langerhans, Demonstrate Significantly Enhanced Insulin Staining at the Capillary Interface of Human Pancreatic β Cells. Metabolites, 2021, 11, 363.	1.3	3
6	Impact of dietary carbohydrate type and protein–carbohydrate interaction on metabolic health. Nature Metabolism, 2021, 3, 810-828.	5.1	42
7	Inside the Insulin Secretory Granule. Metabolites, 2021, 11, 515.	1.3	24
8	Proteomic pathways to metabolic disease and type 2 diabetes in the pancreatic islet. IScience, 2021, 24, 103099.	1.9	12
9	Structural and functional polarisation of human pancreatic beta cells in islets from organ donors with and without type 2 diabetes. Diabetologia, 2021, 64, 618-629.	2.9	40
10	Targeting the insulin granule for modulation of insulin exocytosis. Biochemical Pharmacology, 2021, 194, 114821.	2.0	3
11	Islet Biology and Metabolism. Metabolites, 2021, 11, 786.	1.3	0
12	P.165: Engineering Functionally Mature Human Pluripotent Stem Cell-derived Beta-Cells by Modifying the Beta-cell Niche. Transplantation, 2021, 105, S69-S69.	0.5	0
13	Arp2/3 nucleates F-actin coating of fusing insulin granules in pancreatic Î ² cells to control insulin secretion. Journal of Cell Science, 2020, 133, .	1.2	14
14	A fluorescent timer reporter enables sorting of insulin secretory granules by age. Journal of Biological Chemistry, 2020, 295, 8901-8911.	1.6	22
15	TRAIL-Expressing Monocyte/Macrophages Are Critical for Reducing Inflammation and Atherosclerosis. IScience, 2019, 12, 41-52.	1.9	33
16	ABHD15 regulates adipose tissue lipolysis and hepatic lipid accumulation. Molecular Metabolism, 2019, 25, 83-94.	3.0	22
17	Branched-chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control. Nature Metabolism, 2019, 1, 532-545.	5.1	207
18	Type 2 diabetes-associated single nucleotide polymorphism in Sorcs1 gene results in alternative processing of the Sorcs1 protein in INS1 β-cells. Scientific Reports, 2019, 9, 19466.	1.6	9

Melkam A Kebede

#	Article	IF	CITATIONS
19	High dietary fat and sucrose result in an extensive and time-dependent deterioration in health of multiple physiological systems in mice. Journal of Biological Chemistry, 2018, 293, 5731-5745.	1.6	65
20	The Transcription Factor Nfatc2 Regulates β-Cell Proliferation and Genes Associated with Type 2 Diabetes in Mouse and Human Islets. PLoS Genetics, 2016, 12, e1006466.	1.5	40
21	Sorcs1: From diabetes quantitative trait locus to cellular function. Diabetes Research and Clinical Practice, 2016, 120, S25.	1.1	Ο
22	Dual-Reporter β-Cell-Specific Male Transgenic Rats for the Analysis of β-Cell Functional Mass and Enrichment by Flow Cytometry. Endocrinology, 2016, 157, 1299-1306.	1.4	3
23	Insights into obesity and diabetes at the intersection of mouse and human genetics. Trends in Endocrinology and Metabolism, 2014, 25, 493-501.	3.1	32
24	SORCS1 is necessary for normal insulin secretory granule biogenesis in metabolically stressed β cells. Journal of Clinical Investigation, 2014, 124, 4240-4256.	3.9	53
25	Zinc, insulin, and the liver: a ménage à trois. Journal of Clinical Investigation, 2013, 123, 4136-4139.	3.9	26
26	Glucose activates free fatty acid receptor 1 gene transcription via phosphatidylinositol-3-kinase-dependent <i>O</i> -GlcNAcylation of pancreas-duodenum homeobox-1. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2376-2381.	3.3	56
27	Free Fatty Acid Receptor 1: A New Drug Target for Type 2 Diabetes?. Canadian Journal of Diabetes, 2012, 36, 275-280.	0.4	8
28	Deletion of GPR40 Impairs Glucose-Induced Insulin Secretion In Vivo in Mice Without Affecting Intracellular Fuel Metabolism in Islets. Diabetes, 2009, 58, 2607-2615.	0.3	118
29	Lipid receptors and islet function: therapeutic implications?. Diabetes, Obesity and Metabolism, 2009, 11, 10-20.	2.2	101
30	The Fatty Acid Receptor GPR40 Plays a Role in Insulin Secretion In Vivo After High-Fat Feeding. Diabetes, 2008, 57, 2432-2437.	0.3	151
31	Fructose-1,6-Bisphosphatase Overexpression in Pancreatic Î ² -Cells Results in Reduced Insulin Secretion. Diabetes, 2008, 57, 1887-1895.	0.3	52
32	Modulation of central leptin sensitivity and energy balance in a rat model of diet-induced obesity. Diabetes, Obesity and Metabolism, 2007, 9, 840-852.	2.2	61
33	Increased nicotinamide nucleotide transhydrogenase levels predispose to insulin hypersecretion in a mouse strain susceptible to diabetes. Diabetologia, 2007, 50, 2476-2485.	2.9	71
34	The influence of genetic background on the induction of oxidative stress and impaired insulin secretion in mouse islets. Diabetologia, 2006, 49, 1254-1263.	2.9	53
35	Expression of Human Fructose-1,6-Bisphosphatase in the Liver of Transgenic Mice Results in Increased Glycerol Gluconeogenesis. Endocrinology, 2006, 147, 2764-2772.	1.4	36
36	High glucose-induced impairment in insulin secretion is associated with reduction in islet glucokinase in a mouse model of susceptibility to islet dysfunction. Journal of Molecular Endocrinology, 2005, 35, 39-48.	1.1	35