Ali Esfandyari Bayat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/224428/publications.pdf

Version: 2024-02-01

	686830	887659
907	13	17
citations	h-index	g-index
19	19	933
docs citations	times ranked	citing authors
	citations 19	907 13 citations h-index 19 19

#	Article	IF	CITATIONS
1	Evaluation of rheological and filtration properties of a polymeric water-based drilling mud in presence of nano additives at various temperatures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627, 127128.	2.3	13
2	Assessing the effects of different gas types on stability of SiO2 nanoparticle foam for enhanced oil recovery purpose. Journal of Molecular Liquids, 2020, 313, 113521.	2.3	27
3	Appraising the impacts of SiO2, ZnO and TiO2 nanoparticles on rheological properties and shale inhibition of water-based drilling muds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 581, 123792.	2.3	46
4	Appraising the impact of metal-oxide nanoparticles on rheological properties of HPAM in different electrolyte solutions for enhanced oil recovery. Journal of Petroleum Science and Engineering, 2019, 172, 1057-1068.	2.1	59
5	Experimental investigation of rheological and filtration properties of water-based drilling fluids in presence of various nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 256-263.	2.3	90
6	Assessing the effects of nanoparticle type and concentration on the stability of CO 2 foams and the performance in enhanced oil recovery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 511, 222-231.	2.3	71
7	Effect of emulsified water on the wax appearance temperature of water-in-waxy-crude-oil emulsions. Thermochimica Acta, 2016, 637, 132-142.	1.2	33
8	Malaysia× ³ s stand on municipal solid waste conversion to energy: A review. Renewable and Sustainable Energy Reviews, 2016, 58, 1007-1016.	8.2	96
9	Mixture temperature prediction of waxy oil–water two-phase system flowing near wax appearance temperature. Chinese Journal of Chemical Engineering, 2016, 24, 795-802.	1.7	4
10	INTEGRATED DATA ANALYSIS AND MODELING OF A HIGHLY HETEROGENEOUS CARBONATE RESERVOIR. Special Topics and Reviews in Porous Media, 2016, 7, 27-42.	0.6	0
11	Transportation of Metal Oxide Nanoparticles Through Various Porous Media for Enhanced Oil Recovery. , 2015, , .		20
12	Transport and retention of engineered Al2O3, TiO2 and SiO2 nanoparticles through various sedimentary rocks. Scientific Reports, 2015, 5, 14264.	1.6	52
13	Influence of clay particles on Al2O3 and TiO2 nanoparticles transport and retention through limestone porous media: measurements and mechanisms. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	32
14	Evaluation of vapour extraction process and its prospect as an enhanced oil recovery method. International Journal of Oil, Gas and Coal Technology, 2015, 9, 394.	0.1	3
15	Optimization of solvent composition and injection rate in vapour extraction process. Journal of Petroleum Science and Engineering, 2015, 128, 33-43.	2.1	5
16	TiO2 nanoparticle transport and retention through saturated limestone porous media under various ionic strength conditions. Chemosphere, 2015, 134, 7-15.	4.2	59
17	Application of CO2-based vapor extraction process for high pressure and temperature heavy oil reservoirs. Journal of Petroleum Science and Engineering, 2015, 135, 280-290.	2.1	16
18	Transport and aggregation of Al2O3 nanoparticles through saturated limestone under high ionic strength conditions: measurements and mechanisms. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	15

#	Article	IF	CITATIONS
19	Impact of Metal Oxide Nanoparticles on Enhanced Oil Recovery from Limestone Media at Several Temperatures. Energy & Ener	2.5	266