Boris Lakard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2244249/publications.pdf

Version: 2024-02-01

136950 214800 2,552 85 32 47 citations h-index g-index papers 85 85 85 2988 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ammonia gas sensor based on electrosynthesized polypyrrole films. Talanta, 2009, 78, 199-206.	5.5	142
2	Urea potentiometric biosensor based on modified electrodes with urease immobilized on polyethylenimine films. Biosensors and Bioelectronics, 2004, 19, 1641-1647.	10.1	129
3	Electrochemical Biosensing of Dopamine Neurotransmitter: A Review. Biosensors, 2021, 11, 179.	4.7	98
4	Effect of electrolyte solvent on the morphology of polypyrrole films: Application to the use of polypyrrole in pH sensors. Synthetic Metals, 2008, 158, 453-461.	3.9	97
5	Electrochemical Biosensors Based on Conducting Polymers: A Review. Applied Sciences (Switzerland), 2020, 10, 6614.	2.5	91
6	Urea potentiometric enzymatic biosensor based on charged biopolymers and electrodeposited polyaniline. Biosensors and Bioelectronics, 2011, 26, 4139-4145.	10.1	88
7	Potentiometric miniaturized pH sensors based on polypyrrole films. Sensors and Actuators B: Chemical, 2007, 122, 101-108.	7.8	87
8	Characterization of the surface properties of polypyrrole films: Influence of electrodeposition parameters. Synthetic Metals, 2011, 161, 2498-2505.	3.9	74
9	Ammonia gas sensors based on polypyrrole films: Influence of electrodeposition parameters. Sensors and Actuators B: Chemical, 2012, 171-172, 431-439.	7.8	68
10	Potentiometric pH sensors based on electrodeposited polymers. Polymer, 2005, 46, 12233-12239.	3.8	65
11	Effect of various parameters on the conductivity of free standing electrosynthesized polypyrrole films. Synthetic Metals, 2010, 160, 2180-2185.	3.9	58
12	Quantitative self-powered electrochromic biosensors. Chemical Science, 2017, 8, 1995-2002.	7.4	58
13	Gas Sensors Based on Electrodeposited Polymers. Metals, 2015, 5, 1371-1386.	2.3	56
14	Retention of Cu(II)– and Ni(II)–polyaminocarboxylate complexes by ultrafiltration assisted with polyamines. Desalination, 2010, 258, 87-92.	8.2	54
15	Multi-analyte determination of dopamine and catechol at single-walled carbon nanotubes – Conducting polymer – Tyrosinase based electrochemical biosensors. Journal of Electroanalytical Chemistry, 2015, 744, 53-61.	3.8	53
16	Miniaturized pH biosensors based on electrochemically modified electrodes with biocompatible polymers. Biosensors and Bioelectronics, 2004, 19, 595-606.	10.1	52
17	Development of Amperometric Biosensors Based on Nanostructured Tyrosinase-Conducting Polymer Composite Electrodes. Sensors, 2013, 13, 6759-6774.	3.8	51
18	Electrochromic biosensors based on screen-printed Prussian Blue electrodes. Sensors and Actuators B: Chemical, 2019, 290, 591-597.	7.8	46

#	Article	IF	Citations
19	Flexible Sensors Based on Conductive Polymers. Chemosensors, 2022, 10, 97.	3.6	45
20	Polyelectrolyte modification of ultrafiltration membrane for removal of copper ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 435, 170-177.	4.7	43
21	Full characterization of polypyrrole thin films electrosynthesized in room temperature ionic liquids, water or acetonitrile. Electrochimica Acta, 2014, 137, 298-310.	5.2	43
22	Morphological and adhesive properties of polypyrrole films synthesized by sonoelectrochemical technique. Synthetic Metals, 2010, 160, 2540-2545.	3.9	42
23	Doping properties of PEDOT films electrosynthesized under high frequency ultrasound irradiation. Ultrasonics Sonochemistry, 2011, 18, 140-148.	8.2	39
24	Ab initio study of the polymerization mechanism of poly(p-phenylenediamine). Computational and Theoretical Chemistry, 2003, 638, 177-187.	1.5	38
25	Elaboration and characterization of polyaniline films electrodeposited on tin oxides. Synthetic Metals, 2011, 161, 2162-2169.	3.9	38
26	pH Sensing at Pt Electrode Surfaces Coated with Linear Polyethylenimine from Anodic Polymerization of Ethylenediamine. Journal of the Electrochemical Society, 2001, 148, E435.	2.9	37
27	Microstructured electrodeposited polypyrrole–phthalocyanine hybrid material, from morphology to ammonia sensing. Journal of Materials Chemistry, 2012, 22, 25246.	6.7	37
28	Elaboration of ammonia gas sensors based on electrodeposited polypyrroleâ€"Cobalt phthalocyanine hybrid films. Talanta, 2013, 117, 45-54.	5.5	37
29	Use of sinusoidal voltages with fixed frequency in the preparation of tyrosinase based electrochemical biosensors for dopamine electroanalysis. Sensors and Actuators B: Chemical, 2017, 240, 801-809.	7.8	36
30	Adsorption of Ni(II) ions on colloidal hybrid organic–inorganic silica composites. Colloids and Surfaces B: Biointerfaces, 2012, 93, 1-7.	5.0	34
31	Ab initio study of amino acids containing hydroxy groups (serine, threonine and tyrosine). Computational and Theoretical Chemistry, 2004, 681, 183-189.	1.5	33
32	In situ electrodeposition of biocomposite materials by sinusoidal voltages on microelectrodes array for tyrosinase based amperometric biosensor development. Sensors and Actuators B: Chemical, 2013, 181, 136-143.	7.8	32
33	Application of original assemblies of polyelectrolytes, urease and electrodeposited polyaniline as sensitive films of potentiometric urea biosensors. Electrochimica Acta, 2014, 148, 53-61.	5.2	32
34	Development of miniaturized pH biosensors based on electrosynthesized polymer films. Analytica Chimica Acta, 2007, 597, 313-321.	5.4	29
35	Theoretical study of the vibrational spectra of polyethylenimine and polypropylenimine. Computational and Theoretical Chemistry, 2004, 685, 83-87.	1.5	28
36	Charge properties of membranes modified by multilayer polyelectrolyte adsorption. Journal of Colloid and Interface Science, 2010, 344, 221-227.	9.4	28

#	Article	IF	Citations
37	Ab initio study of the electronic and structural properties of the crystalline polyethyleneimine polymer. Journal of Chemical Physics, 2004, 120, 9376-9382.	3.0	26
38	Surface modification of p-Si by a polyethylenimine coating: influence of the surface pre-treatment. Application to a potentiometric transducer as pH sensor. Electrochimica Acta, 2002, 47, 2597-2602.	5. 2	25
39	Synthesis and characterization of polyaniline-silica composites: Raspberry vs core-shell structures. Where do we stand?. Journal of Colloid and Interface Science, 2017, 502, 184-192.	9.4	24
40	Effects of polypyrrole modified electrode functionalization on potentiometric pH responses. Synthetic Metals, 2010, 160, 1073-1080.	3.9	22
41	Investigation of pharmaceutically active ionic liquids as electrolyte for the electrosynthesis of polypyrrole and active component in controlled drug delivery. Electrochimica Acta, 2016, 211, 950-961.	5.2	21
42	A straightforward procedure for the synthesis of silica@polyaniline core-shell nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 573, 237-245.	4.7	21
43	Synthesis of polymer materials for use as cell culture substrates. Electrochimica Acta, 2007, 53, 1114-1126.	5.2	20
44	Morphological characterization and analytical application of poly(3,4-ethylenedioxythiophene)–Prussian blue composite films electrodeposited in situ on platinum electrode chips. Thin Solid Films, 2011, 519, 7754-7762.	1.8	20
45	Novel in situ electrochemical deposition of platinum nanoparticles by sinusoidal voltages on conducting polymer films. Synthetic Metals, 2012, 162, 193-198.	3.9	20
46	Preparation of polyelectrolyte-modified membranes for heavy metal ions removal. Environmental Technology (United Kingdom), 2017, 38, 2476-2485.	2.2	20
47	Ab initio study of the electrochemical polymerization mechanism of ω–diamines. Journal of Chemical Physics, 2001, 115, 7219-7226.	3.0	19
48	Characterization of charge properties of an ultrafiltration membrane modified by surface grafting of poly(allylamine) hydrochloride. Journal of Colloid and Interface Science, 2009, 333, 335-340.	9.4	19
49	Electrochemically deposited polyethyleneimine films and their characterization. Synthetic Metals, 2010, 160, 1359-1364.	3.9	18
50	Investigation of Polycarbazoles Thin Films Prepared by Electrochemical Oxidation of Synthesized Carbazole Derivatives. Frontiers in Materials, 2019, 6, .	2.4	17
51	Functionalization of organic membranes by polyelectrolyte multilayer assemblies: Application to the removal of copper ions from aqueous solutions. Journal of Colloid and Interface Science, 2012, 376, 202-208.	9.4	16
52	From the Solution Processing of Hydrophilic Molecules to Polymer-Phthalocyanine Hybrid Materials for Ammonia Sensing in High Humidity Atmospheres. Sensors, 2014, 14, 13476-13495.	3.8	15
53	Fully-printed and silicon free self-powered electrochromic biosensors: Towards naked eye quantification. Sensors and Actuators B: Chemical, 2020, 306, 127535.	7.8	15
54	Ab initio and DFT study of aliphatic diamines. Computational and Theoretical Chemistry, 2002, 584, 15-36.	1.5	13

#	Article	IF	Citations
55	Glow discharge optical emission spectroscopy: a complementary technique to analyze thin electrodeposited polyaniline films. Thin Solid Films, 2014, 550, 27-35.	1.8	12
56	Electrosynthesis and characterization of polymer films on silicon substrates for applications in micromanipulation. Synthetic Metals, 2012, 162, 2370-2378.	3.9	11
57	Elaboration and characterization of carboxylic acid-functionalized polypyrrole films. Synthetic Metals, 2016, 220, 247-254.	3.9	11
58	Electrochemical preparation and physicochemical study of polymers obtained from carbazole and N-((methoxycarbonyl)methyl)carbazole. Synthetic Metals, 2020, 270, 116584.	3.9	10
59	Ab initio study of the electrochemical polymerization mechanism leading from DETA to PEI. Computational and Theoretical Chemistry, 2002, 593, 133-141.	1.5	9
60	Fabrication of a miniaturized cell using microsystem technologies for electrochemical applications. Electrochimica Acta, 2005, 50, 1863-1869.	5.2	9
61	Towards carboxylic acid-functionalized aniline monomers: Chemical synthesis, electropolymerization and characterization. Progress in Organic Coatings, 2016, 99, 429-436.	3.9	9
62	Use of Modified Colloids and Membranes to Remove Metal Ions from Contaminated Solutions. Colloids and Interfaces, 2018, 2, 19.	2.1	9
63	Flexible and conductive multilayer films based on the assembly of PEDOT:PSS and water soluble polythiophenes. Organic Electronics, 2017, 46, 263-269.	2.6	8
64	Poly(allylamine) plasma polymer coatings for an efficient retention of Ni(II) ions by ultrafiltration membranes. Plasma Processes and Polymers, 2019, 16, 1800134.	3.0	8
65	Predictive tools for selection of appropriate polyelectrolyte multilayer film for the functionalization of organic membranes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 486, 153-160.	4.7	7
66	Influence of pre-grafted pyrrole-based silane on the electrodeposition and chemical properties of polypyrrole films. Synthetic Metals, 2018, 246, 220-229.	3.9	7
67	pH-Responsive PEG/PAA Multilayer Assemblies for Reversible Adhesion of Micro-Objects. ACS Applied Polymer Materials, 2020, 2, 5646-5653.	4.4	7
68	Characterization of an ultrafiltration membrane modified by sorption of branched polyethyleneimine. Desalination and Water Treatment, 2009, 1, 186-193.	1.0	6
69	PEDOT-PSS based 2-in-1 step-by-step films: A refined study. Synthetic Metals, 2014, 194, 38-46.	3.9	6
70	Self-assembly of polyelectrolytes for the removal of metal cations from aqueous solutions. Journal of Environmental Chemical Engineering, 2015, 3, 763-769.	6.7	6
71	Electrodeposition Behavior, Physicochemical Properties and Corrosion Resistance of Ni–Co Coating Modified by Gelatin Additive. Protection of Metals and Physical Chemistry of Surfaces, 2017, 53, 1059-1069.	1.1	6
72	Chemical and biological sensors based on modified electrodes with electropolymerized diamines. , 2001, , 561-571.		6

#	Article	IF	Citations
73	In vitro induction of differentiation by retinoic acid in an immortalized olfactory neuronal cell line. Acta Histochemica, 2007, 109, 111-121.	1.8	5
74	Novel strategy to prepare polyaniline—Modified SiO2/TiO2 composite particles. Synthetic Metals, 2013, 181, 104-109.	3.9	5
75	Development of new sticky and conducting polymer surfaces for MEMS applications. Synthetic Metals, 2021, 276, 116757.	3.9	5
76	Investigation of electrochemical oxidative coupling of 3 and 6 substituted carbazoles. Journal of Electroanalytical Chemistry, 2021, 894, 115356.	3.8	5
77	Combined elastic neutron scattering experiments and molecular dynamics simulations on the concentrated liquid electrolyte NaIA·3.3NH3. Journal of Molecular Liquids, 2003, 108, 1-19.	4.9	4
78	Evaluation of Adhesion Forces for the Manipulation of Micro-Objects in Submerged Environment through Deposition of pH Responsive Polyelectrolyte Layers. Langmuir, 2016, 32, 102-111.	3.5	3
79	Elaboration of thin colloidal silica films with controlled thickness and wettability. Comptes Rendus Chimie, 2016, 19, 665-673.	0.5	3
80	Conductive multilayer film based on composite materials made of conjugated polyelectrolytes and inorganic particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124290.	4.7	3
81	Elaboration of Transparent Polymeric Films Trapping Copper Ions by Complexation. Journal of the Electrochemical Society, 2004, 151, C245.	2.9	1
82	Electrochemical polymerization of 1,2-ethanedithiol as a new way to synthesize polyethylenedisulfide. Polymer, 2008, 49, 1743-1747.	3.8	1
83	Investigation of polycarbazoles thin films prepared by electrochemical oxidation of 3- and 9-substituted carbazoles. Progress in Organic Coatings, 2022, 162, 106563.	3.9	1
84	Electrodeposited Copolymer Films with Tunable Conductivity. Electrochem, 2020, 1, 358-366.	3.3	0
85	Electrodeposition and Characterization of Conducting Polymer Films Obtained from Carbazole and 2-(9H-carbazol-9-yl)acetic Acid. Electrochem, 2022, 3, 322-336.	3.3	O