Barry R Lentz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2243972/publications.pdf

Version: 2024-02-01

		53794	5	58581
148	7,220 citations	45		82
papers	citations	h-index		g-index
152	152	152		4472
132	132	132		77/2
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 2. Two-component phosphatidylcholine liposomes. Biochemistry, 1976, 15, 4529-4537.	2.5	502
2	Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 1. Single component phosphatidylcholine liposomes. Biochemistry, 1976, 15, 4521-4528.	2.5	460
3	Membrane "fluidity―as detected by diphenylhexatriene probes. Chemistry and Physics of Lipids, 1989, 50, 171-190.	3.2	401
4	Use of fluorescent probes to monitor molecular order and motions within liposome bilayers. Chemistry and Physics of Lipids, 1993, 64, 99-116.	3.2	357
5	Exposure of platelet membrane phosphatidylserine regulates blood coagulation. Progress in Lipid Research, 2003, 42, 423-438.	11.6	295
6	Cholesterol-phosphatidylcholine interactions in multilamellar vesicles. Biochemistry, 1980, 19, 1943-1954.	2.5	215
7	Evolution of Lipidic Structures during Model Membrane Fusion and the Relation of This Process to Cell Membrane Fusionâ€. Biochemistry, 1997, 36, 6251-6259.	2.5	183
8	Influence of Lipid Composition on Physical Properties and PEG-Mediated Fusion of Curved and Uncurved Model Membrane Vesicles: "Nature's Own―Fusogenic Lipid Bilayerâ€. Biochemistry, 2001, 40, 4340-4348.	2.5	183
9	PEG as a tool to gain insight into membrane fusion. European Biophysics Journal, 2007, 36, 315-326.	2.2	151
10	Protein machines and lipid assemblies: current views of cell membrane fusion. Current Opinion in Structural Biology, 2000, 10, 607-615.	5.7	137
11	Neuronal SNAREs Do Not Trigger Fusion between Synthetic Membranes but Do Promote PEG-Mediated Membrane Fusion. Biophysical Journal, 2006, 90, 1661-1675.	0.5	134
12	Polymer-induced membrane fusion: potential mechanism and relation to cell fusion events. Chemistry and Physics of Lipids, 1994, 73, 91-106.	3.2	130
13	"Squiggle-H2O― An enquiry into the importance of solvation effects in phosphate ester and anhydride reactions. Biochimica Et Biophysica Acta - Bioenergetics, 1970, 223, 1-15.	1.0	122
14	Poly(ethylene glycol) (PEG)-mediated fusion between pure lipid bilayers: a mechanism in common with viral fusion and secretory vesicle release? (Review). Molecular Membrane Biology, 1999, 16, 279-296.	2.0	115
15	Expression of coagulant activity in human platelets: Release of membranous vesicles providing platelet factor 1 and platelet factor 3. Thrombosis Research, 1985, 39, 63-79.	1.7	112
16	Spontaneous fusion of phosphatidylcholine small unilamellar vesicles in the fluid phase. Biochemistry, 1987, 26, 5389-5397.	2.5	112
17	Bilayer curvature and certain amphipaths promote poly(ethylene glycol)-induced fusion of dipalmitoylphosphatidylcholine unilamellar vesicles. Biochemistry, 1992, 31, 2643-2653.	2.5	105
18	Modulation of poly(ethylene glycol)-induced fusion by membrane hydration: importance of interbilayer separation. Biochemistry, 1992, 31, 2653-2661.	2.5	96

#	Article	IF	Citations
19	A new model to describe extrinsic protein binding to phospholipid membranes of varying composition: application to human coagulation proteins. Biochemistry, 1989, 28, 7453-7461.	2.5	94
20	Water molecule interactions. Stability of cyclic polymers. Journal of Chemical Physics, 1973, 58, 5296-5308.	3.0	93
21	Phase behavior of large unilamellar vesicles composed of synthetic phospholipids. Biochemistry, 1984, 23, 2353-2362.	2.5	93
22	Secretory and viral fusion may share mechanistic events with fusion between curved lipid bilayers. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9274-9279.	7.1	87
23	Energetics of Vesicle Fusion Intermediates: Comparison of Calculations with Observed Effects of Osmotic and Curvature Stresses. Biophysical Journal, 2004, 86, 2951-2964.	0.5	83
24	Advantages and limitations of 1-palmitoyl-2-[{2-[4-(6-phenyl-trans-1,3,5-hexatrienyl)phenyl]ethyl}carbonyl]-3-sn-phosphatidylcholine as a fluorescent membrane probe. Biochemistry, 1985, 24, 6178-6185.	2.5	82
25	Acyl Chain Unsaturation and Vesicle Curvature Alter Outer Leaflet Packing and Promote Poly(ethylene glycol)-Mediated Membrane Fusionâ€. Biochemistry, 1997, 36, 5827-5836.	2.5	80
26	Osmotic and Curvature Stress Affect PEG-Induced Fusion of Lipid Vesicles but Not Mixing of Their Lipids. Biophysical Journal, 2002, 82, 2090-2100.	0.5	79
27	Phospholipid lateral organization in synthetic membranes as monitored by pyrene-labeled phospholipids: effects of temperature and prothrombin fragment 1 binding. Biochemistry, $1986, 25, 567-574$.	2.5	71
28	Association of factor V activity with membranous vesicles released from human platelets: Requirement for platelet stimulation. Thrombosis Research, 1985, 39, 49-61.	1.7	70
29	Outer Leaflet-Packing Defects Promote Poly(ethylene glycol)-Mediated Fusion of Large Unilamellar Vesicles. Biochemistry, 1997, 36, 421-431.	2.5	68
30	Large vesicle contamination in small, unilamellar vesicles. Biochimica Et Biophysica Acta - Biomembranes, 1980, 597, 92-99.	2.6	67
31	Properties and Structures of the Influenza and HIV Fusion Peptides on Lipid Membranes: Implications for a Role in Fusion. Biophysical Journal, 2005, 89, 3183-3194.	0.5	66
32	Effect of lipid membrane structure on the adenosine 5'-triphosphate hydrolyzing activity of the calcium-stimulated adenosinetriphosphatase of sarcoplasmic reticulum. Biochemistry, 1981, 20, 6810-6817.	2.5	64
33	Soluble Phospholipids Enhance Factor Xa-Catalyzed Prothrombin Activation in Solutionâ€. Biochemistry, 1996, 35, 7482-7491.	2.5	62
34	Roles of Curvature and Hydrophobic Interstice Energy in Fusion: Studies of Lipid Perturbant Effectsâ€. Biochemistry, 2004, 43, 3507-3517.	2.5	59
35	Rate and extent of polyethylene glycol-induced large vesicle fusion monitored by bilayer and internal contents mixing. Biochemistry, 1986, 25, 6678-6688.	2.5	55
36	Poly(ethylene glycol)-induced fusion and rupture of dipalmitoylphosphatidylcholine large, unilamellar extruded vesicles. Biochemistry, 1993, 32, 9172-9180.	2.5	55

3

#	Article	IF	Citations
37	Acyl chain order and lateral domain formation in mixed phosphatidylcholine-sphingomyelin multilamellar and unilamellar vesicles. Biochemistry, 1981, 20, 6803-6809.	2.5	54
38	Kinetics of Lipid Rearrangements during Poly(ethylene glycol)-Mediated Fusion of Highly Curved Unilamellar Vesicles. Biochemistry, 2002, 41, 1241-1249.	2.5	52
39	Structure of liquid water. II. Improved statistical thermodynamic treatment and implications of a cluster model. The Journal of Physical Chemistry, 1974, 78, 1531-1550.	2.9	50
40	Phase behavior of membranes reconstituted from dipentadecanoylphosphatidylcholine and the magnesium-dependent, calcium-stimulated adenosine triphosphatase of sarcoplasmic reticulum: evidence for a disrupted lipid domain surrounding protein. Biochemistry, 1985, 24, 433-442.	2.5	50
41	Polyethylene glycol-induced lipid mixing but not fusion between synthetic phosphatidylcholine large unilamellar vesicles. Biochemistry, 1991, 30, 4193-4200.	2.5	50
42	Comparison of the abilities of synthetic and platelet-derived membranes to enhance thrombin formation. Thrombosis Research, 1985, 39, 711-724.	1.7	49
43	Evaluation of membrane phase behavior as a tool to detect extrinsic protein-induced domain formation: binding of prothrombin to phosphatidylserine/phosphatidylcholine vesicles. Biochemistry, 1990, 29, 6720-6729.	2.5	48
44	The Rate of Lipid Transfer during Fusion Depends on the Structure of Fluorescent Lipid Probes: A New Chain-Labeled Lipid Transfer Probe Pairâ€. Biochemistry, 2001, 40, 8292-8299.	2.5	48
45	A model for the effect of lipid oxidation on diphenylhexatriene fluorescence in phospholipid vesicles. Biochimica Et Biophysica Acta - Biomembranes, 1981, 645, 17-23.	2.6	46
46	VSV Transmembrane Domain (TMD) Peptide Promotes PEG-Mediated Fusion of Liposomes in a Conformationally Sensitive Fashionâ€. Biochemistry, 2002, 41, 14925-14934.	2.5	46
47	Partial Glycosylation at Asparagine-2181 of the Second C-Type Domain of Human Factor V Modulates Assembly of the Prothrombinase Complexâ€. Biochemistry, 1999, 38, 11448-11454.	2.5	44
48	Fusion and phase separation monitored by lifetime changes of a fluorescent phospholipid probe. Biochemistry, 1986, 25, 1021-1026.	2.5	43
49	Influence of gp41 Fusion Peptide on the Kinetics of Poly(ethylene glycol)-Mediated Model Membrane Fusionâ€. Biochemistry, 2002, 41, 10866-10876.	2.5	43
50	Phospholipid-Specific Conformational Changes in Human Prothrombin upon Binding to Procoagulant Acidic Lipid Membranes. Thrombosis and Haemostasis, 1994, 71, 596-604.	3.4	43
51	Determination of phosphatidylglycerol asymmetry in small, unilamellar vesicles by chemical modification. Biochemistry, 1980, 19, 2555-2559.	2.5	42
52	Mechanism of poly(ethylene glycol)-induced lipid transfer between phosphatidylcholine large unilamellar vesicles: a fluorescent probe study. Biochemistry, 1991, 30, 6780-6787.	2.5	41
53	Activation Thermodynamics of Poly(Ethylene Glycol)-Mediated Model Membrane Fusion Support Mechanistic Models of Stalk and Pore Formation. Biophysical Journal, 2012, 102, 2751-2760.	0.5	41
54	A phosphatidylserine binding site in factor Va C1 domain regulates both assembly and activity of the prothrombinase complex. Blood, 2008, 112, 2795-2802.	1.4	40

#	Article	IF	Citations
55	Wild-Type and Mutant Hemagglutinin Fusion Peptides Alter Bilayer Structure as Well as Kinetics and Activation Thermodynamics of Stalk and Pore Formation Differently: Mechanistic Implications. Biophysical Journal, 2013, 105, 2495-2506.	0.5	40
56	Localization of Phosphatidylserine Binding Sites to Structural Domains of Factor Xa. Journal of Biological Chemistry, 2002, 277, 1855-1863.	3.4	38
57	Phase behavior of mixed phosphatidylglycerol/phosphatidylcholine multilamellar and unilamellar vesicles. Biochemistry, 1982, 21, 4212-4219.	2.5	37
58	Comparison of lipid binding and kinetic properties of normal, variant, and .gammacarboxyglutamic acid modified human factor IX and factor IXa. Biochemistry, 1985, 24, 8064-8069.	2.5	36
59	Transbilayer Lipid Redistribution Accompanies Poly(ethylene glycol) Treatment of Model Membranes but Is Not Induced by Fusionâ€. Biochemistry, 1997, 36, 2076-2083.	2.5	36
60	Role of Procoagulant Lipids in Human Prothrombin Activation. 1. Prothrombin Activation by Factor Xain the Absence of Factor Vaand in the Absence and Presence of Membranesâ€. Biochemistry, 2002, 41, 935-949.	2.5	36
61	A Slight Asymmetry in the Transbilayer Distribution of Lysophosphatidylcholine Alters the Surface Properties and Poly(ethylene glycol)-Mediated Fusion of Dipalmitoylphosphatidylcholine Large Unilamellar Vesiclesâ€. Biochemistry, 1996, 35, 12602-12611.	2.5	35
62	Analysis of Membrane Fusion as a Two-State Sequential Process: Evaluation of the Stalk Model. Biophysical Journal, 2007, 92, 4012-4029.	0.5	35
63	Fusion Peptides Promote Formation of Bilayer Cubic Phases in Lipid Dispersions. An X-Ray Diffraction Study. Biophysical Journal, 2013, 104, 1029-1037.	0.5	35
64	Effects of Hemagglutinin Fusion Peptide on Poly(ethylene glycol)-Mediated Fusion of Phosphatidylcholine Vesicles. Biochemistry, 2001, 40, 14243-14251.	2.5	34
65	Phosphatidylserine Binding Alters the Conformation and Specifically Enhances the Cofactor Activity of Bovine Factor Va. Biochemistry, 2002, 41, 5675-5684.	2.5	34
66	Role of Procoagulant Lipids in Human Prothrombin Activation. 2. Soluble Phosphatidylserine Upregulates and Directs Factor Xato Appropriate Peptide Bonds in Prothrombinâ€. Biochemistry, 2002, 41, 950-957.	2.5	34
67	Soluble Phosphatidylserine Triggers Assembly in Solution of a Prothrombin-activating Complex in the Absence of a Membrane Surface. Journal of Biological Chemistry, 2002, 277, 29765-29773.	3.4	33
68	Efficient Thrombin Generation Requires Molecular Phosphatidylserine, Not a Membrane Surface. Biochemistry, 2005, 44, 16998-17006.	2.5	33
69	Hemagglutinin Fusion Peptide Mutants in Model Membranes: Structural Properties, Membrane Physical Properties, and PEG-Mediated Fusion. Biophysical Journal, 2011, 101, 1095-1104.	0.5	33
70	Filling Potholes on the Path to Fusion Pores. Biophysical Journal, 2002, 82, 555-557.	0.5	32
71	A Novel Fluorescence Assay To Study Propeptide Interaction with γ-Glutamyl Carboxylaseâ€. Biochemistry, 2001, 40, 11723-11733.	2.5	31
72	Phosphatidylserine Inhibits and Calcium Promotes Model Membrane Fusion. Biophysical Journal, 2012, 103, 1880-1889.	0.5	31

#	Article	IF	CITATIONS
73	Fluorescence Resonance Energy Transfer Study of Shape Changes in Membrane-Bound Bovine Prothrombin and Meizothrombinâ€. Biochemistry, 1997, 36, 4701-4711.	2.5	28
74	Cooperative Roles of Factor Va and Phosphatidylserine-containing Membranes as Cofactors in Prothrombin Activation. Journal of Biological Chemistry, 2003, 278, 5679-5684.	3.4	28
75	Evidence from total internal reflection fluorescence microscopy for calcium-independent binding of prothrombin to negatively charged planar phospholipid membranes. Biochemistry, 1991, 30, 10991-10999.	2.5	27
76	Calcium-dependent and calcium-independent interactions of prothrombin fragment 1 with phosphatidylglycerol/phosphatidylcholine unilamellar vesicles. Biochemistry, 1985, 24, 6997-7005.	2.5	26
77	Morphology and phase behavior of two types of unilamellar vesicles prepared from synthetic phosphatidylcholines studied by freeze-fracture electron microscopy and calorimetry. Biochimica Et Biophysica Acta - Biomembranes, 1985, 812, 493-502.	2.6	24
78	The Phosphatidylserine Binding Site of the Factor Va C2 Domain Accounts for Membrane Binding but Does Not Contribute to the Assembly or Activity of a Human Factor Xaâ ⁻ Factor Va Complex. Biochemistry, 2005, 44, 711-718.	2.5	24
79	Depth-Dependent Membrane Ordering by Hemagglutinin Fusion Peptide Promotes Fusion. Journal of Physical Chemistry B, 2017, 121, 1640-1648.	2.6	24
80	Phosphatidylserine-Containing Membranes Alter the Thermal Stability of Prothrombin's Catalytic Domain: A Differential Scanning Calorimetric Study. Biochemistry, 1994, 33, 5460-5468.	2.5	23
81	Transbilayer redistribution of phosphatidylglycerol in small, unilamellar vesicles induced by specific divalent cations. Biochemistry, 1982, 21, 6799-6807.	2.5	21
82	Effects of Water Soluble Phosphotidylserine on Bovine Factor Xa: Functional and Structural Changes Plus Dimerization. Biophysical Journal, 2003, 84, 1238-1251.	0.5	21
83	Quinine as a fluorescence lifetime standard: Conditions for effectively homogeneous decay. Chemical Physics Letters, 1984, 104, 163-167.	2.6	20
84	Modulation of Prothrombinase Assembly and Activity by Phosphatidylethanolamine. Journal of Biological Chemistry, 2011, 286, 35535-35542.	3.4	20
85	The lateral diffusion and fibrinogen induced clustering of platelet integrin \hat{l}_{\pm} _{lb< sub> \hat{l}^{2}_{3< sub>reconstituted into physiologically mimetic GUVs. Integrative Biology (United Kingdom), 2015, 7, 402-411.}}	1.3	20
86	Specificity of Soluble Phospholipid Binding Sites on Human Factor Xaâ€. Biochemistry, 2002, 41, 7751-7762.	2.5	18
87	Ca2+ switches the effect of PS-containing membranes on Factor Xa from activating to inhibiting: implications for initiation of blood coagulation. Biochemical Journal, 2014, 462, 591-601.	3.7	18
88	Phosphatidylserine-Dependent Catalysis of Stalk and Pore Formation by Synaptobrevin JMR-TMD Peptide. Biophysical Journal, 2015, 109, 1863-1872.	0.5	18
89	Factor Xa Binding to Phosphatidylserine-Containing Membranes Produces an Inactive Membrane-Bound Dimer. Biophysical Journal, 2009, 97, 2232-2241.	0.5	16
90	Differentiation of factor V-like coagulant activity from catalytic phospholipid-like surface activity in membrane fractions derived from human platelets. Thrombosis Research, 1981, 22, 603-621.	1.7	15

#	Article	IF	CITATIONS
91	pH Alters PEG-Mediated Fusion of Phosphatidylethanolamine-Containing Vesicles. Biophysical Journal, 2014, 107, 1327-1338.	0.5	15
92	Membrane Modulates Affinity for Calcium Ion to Create an Apparent Cooperative Binding Response by Annexin a5. Biophysical Journal, 2013, 104, 2437-2447.	0.5	14
93	Phosphatidylserine and FVa regulate FXa structure. Biochemical Journal, 2014, 459, 229-239.	3.7	14
94	On the Analysis of Elastic Deformations in Hexagonal Phases. Biophysical Journal, 2004, 86, 3324-3328.	0.5	13
95	THE PLATELET MEMBRANE AS A CATALYTIC SURFACE IN THROMBIN GENERATION: AVAILABILITY OF PLATELET FACTOR 1 AND PLATELET FACTOR 3*. Annals of the New York Academy of Sciences, 1981, 370, 348-358.	3.8	12
96	Pyrene Cholesterol Reports the Transient Appearance of Nonlamellar Intermediate Structures during Fusion of Model Membranesâ€. Biochemistry, 2002, 41, 5913-5919.	2.5	12
97	A Simple Method for Correction of Circular Dichroism Spectra Obtained from Membrane-Containing Samples. Biochemistry, 2012, 51, 1005-1008.	2.5	12
98	Structure of liquid water. III. Thermodynamic properties of liquid deuterium oxide. The Journal of Physical Chemistry, 1975, 79, 2352-2361.	2.9	11
99	Lipid-Protein Interactions in Sarcoplasmic Reticulum. Biophysical Journal, 1982, 37, 30-32.	0.5	11
100	The Transmembrane Domain Peptide of Vesicular Stomatitis Virus Promotes Both Intermediate and Pore Formation during PEG-Mediated Vesicle Fusion. Biophysical Journal, 2014, 107, 1318-1326.	0.5	11
101	A method for quantitative interpretation of fluorescence detection of poly(ethylene glycol)-mediated 1-palmitoyl-2-[[[2-[4-(phenyl-trans-1,3,5-hexatrienyl) phenyl]ethyl]oxyl]carbonyl]3-sn-phosphatidylcholine (DPHpPC) transfer and fusion between phospholipid vesicles in the dehydrated state. Journal of Fluorescence, 1994, 4, 153-163.	2.5	10
102	Functional and Structural Characterization of Factor Xa Dimer in Solution. Biophysical Journal, 2009, 96, 974-986.	0.5	10
103	The kinetic mechanism of cation-catalyzed phosphatidylglycerol transbilayer migration implies close contact between vesicles as an intermediate state. Biochemistry, 1989, 28, 4575-4580.	2.5	9
104	Structural comparisons of meizothrombin and its precursor prothrombin in the presence or absence of procoagulant membranes. Biochemistry, 1992, 31, 6990-6996.	2.5	9
105	Determination of the rate of rapid lipid transfer induced by poly(ethylene glycol) using the SLM Fourier transform phase and modulation spectrofluorometer. Journal of Fluorescence, 1991, 1, 105-112.	2.5	7
106	Phosphatidylserine-Induced Factor Xa Dimerization and Binding to Factor Va Are Competing Processes in Solution. Biochemistry, 2013, 52, 143-151.	2.5	7
107	[4] Flourescence lifetime measurements to monitor membrane lipid mixing. Methods in Enzymology, 1993, 220, 42-50.	1.0	6
108	Are acidic lipid domains induced by extrinsic protein binding to membranes?. Molecular Membrane Biology, 1995, 12, 65-67.	2.0	6

#	Article	IF	Citations
109	Commentary: Lipids and Liposomes can do More Than Carry Drugs: Phosphatidylserine as a Regulator of Blood Coagulation. Journal of Liposome Research, 1999, 9, ix-xv.	3.3	6
110	Vibrational frequencies of water clusters. The Journal of Physical Chemistry, 1974, 78, 1844-1847.	2.9	5
111	Soluble Phosphatidylserine Binds to Two Sites on Human Factor IXa in a Ca2+ Dependent Fashion to Specifically Regulate Structure and Activity. PLoS ONE, 2014, 9, e100006.	2.5	5
112	Factor Xa dimerization competes with prothrombinase complex formation on platelet-like membrane surfaces. Biochemical Journal, 2015, 467, 37-46.	3.7	5
113	A Novel Assay for Detecting Fusion Pore Formation: Implications for the Fusion Mechanism. Biochemistry, 2013, 52, 8510-8517.	2.5	4
114	Fluorescence lifetimes of diphenylhexatriene-containing probes reflect local probe concentrations: Application to the measurement of membrane fusion. Journal of Fluorescence, 1995, 5, 29-38.	2.5	3
115	PARTIALLY PURIFIED ECHIS CARINATUS VENOM CLEAVES ACTIVE-SITE-MUTATED BOVINE PROTHROMBIN AT TWO SITES. Thrombosis Research, 1997, 85, 369-375.	1.7	3
116	Seeing Is Believing: The Stalk Intermediate. Biophysical Journal, 2006, 91, 2747-2748.	0.5	3
117	Construction, properties and specific fluorescent labeling of a bovine prothrombin mutant engineered with a free C-terminal cysteine. Protein Engineering, Design and Selection, 1996, 9, 545-553.	2.1	1
118	Synaptobrevin Trans-Membrane Domain forms a Complex that Enhances the Rate of "Stalk―and Pore Formation in PEG-Mediated Vesicle Fusion. Biophysical Journal, 2012, 102, 500a.	0.5	1
119	Concentration Dependence of DPHpPC Fluorescence Lifetime: Photophysics and Utility for Monitoring Membrane Fusion., 1988,, 557-566.		1
120	C6PS Regulates the Inactivation of Factor Va by Activated Protein C Blood, 2005, 106, 1023-1023.	1.4	1
121	Mutation of the Hydrophobic Residues in Factor Va2 C1 Domain Affects the Phosphatidylserine Mediated Prothrombin Activation Blood, 2004, 104, 1733-1733.	1.4	1
122	HA Fusion Peptide, but Not Two Biologically Inactive Mutants, Lowers Activation Barrier of the Pore Formation Step during PEG-mediated Fusion. Biophysical Journal, 2009, 96, 360a.	0.5	0
123	Fusion Peptide of Gp41 Self Associates in the Model Membrane and then Interacts with its Trans-Membrane Domain. Biophysical Journal, 2010, 98, 279a.	0.5	0
124	VSV Trans-Membrane Domain Promotes Content Mixing to occur Early in the Fusion Process. Biophysical Journal, 2010, 98, 674a.	0.5	0
125	Membrane Phosphatidylserine and Plasma Ca2+ Levels Switch Factor Xa from an Inactive Dimer to an Active Monomer. Biophysical Journal, 2010, 98, 690a.	0.5	0
126	Role of Curvature in PEG-Mediated Fusion Between Highly Curved and Un-Curved Membranes. Biophysical Journal, 2010, 98, 674a.	0.5	0

#	Article	IF	Citations
127	Effect of HIV Gp41 Fusion Peptide and its Cross-Linked Oligomers in Membrane Fusion. Biophysical Journal, 2010, 98, 674a.	0.5	0
128	Snare-Mediated Fusion Between Highly Curved and Un-Curved Membranes. Biophysical Journal, 2011, 100, 635a.	0.5	0
129	Role of Anionic Lipids on Peg-Mediated Model Membrane Fusion. Biophysical Journal, 2011, 100, 635a.	0.5	0
130	Trans-Membrane Domain of HIV gp41 Interacts with the Externally Added gp41 Fusion Peptide: TMD-FP Complex Inhibits Model Membrane Fusion. Biophysical Journal, 2011, 100, 634a-635a.	0.5	0
131	Both Fusion Peptide and Trans-Membrane Domain of HIV gp41 Individually Reduce the Activation Barriers for the Fusion Process. Biophysical Journal, 2011, 100, 635a.	0.5	0
132	The Trans-Membrane Domain of the SNARE Fusion Protein Syntaxin (SX) Enhances the Rate of Intermediate Formation. Biophysical Journal, 2011, 100, 635a.	0.5	0
133	HIV gp41 Trans-Membrane Domain Promotes both Stalk and Fusion Pore Formation in Poly(Ethylene-) Glycol Mediated Membrane Fusion. Biophysical Journal, 2012, 102, 499a-500a.	0.5	0
134	Effect of Phosphatidylserine on Asymmetric Membrane Fusion. Biophysical Journal, 2012, 102, 501a.	0.5	0
135	Effects of Wild Type and Mutant HA Fusion Peptides on Kinetics and Activation Thermodynamics of Stalk and Pore Formation: Mechanistic Implications. Biophysical Journal, 2013, 104, 87a-88a.	0.5	0
136	A Novel Assay to Detect Fusion Pore Formation: Implication for Fluctuating Pore Formation. Biophysical Journal, 2013, 104, 87a.	0.5	0
137	Phosphatidylserine and Factor VA Regulate Factor Xa Structure. Biophysical Journal, 2014, 106, 518a.	0.5	0
138	Jan Hermans (1933â€2018): Redâ€blooded biophysicists study hemoglobin. Proteins: Structure, Function and Bioinformatics, 2019, 87, 171-173.	2.6	0
139	Phosphatidylserine and phosphatidylethanolamine regulate the structure and function of FVIIa and its interaction with soluble tissue factor. Bioscience Reports, 2021, 41, .	2.4	0
140	Phosphatidylserine (PS) Binding Sites in Kringle Modules Regulate the Domain Organization and Conformation of Bovine Prothrombin Blood, 2005, 106, 1952-1952.	1.4	0
141	Efficient Thrombin Generation Requires Molecular Phosphatidylserine, Not a Membrane Surface Blood, 2005, 106, 1022-1022.	1.4	0
142	Identification of Amino Acid Residues in the C1 Domain of Human Factor Va2 That Affect Phosphatidylserine-Triggered Cofactor Activity Blood, 2006, 108, 1711-1711.	1.4	0
143	Membrane Phosphatidylserine and Plasma Calcium Levels Switch Factor Xa From An Inactive Dimer to An Active Monomer Blood, 2009, 114, 3180-3180.	1.4	0
144	Modulation of Prothrombinse Assembly and Activity by Phosphotidylethanolamine Blood, 2009, 114, 4207-4207.	1.4	0

#	Article	IF	CITATIONS
145	Factor Xa Dimerization and Prothrombinase Complex Formation Are Competitive Process On a Membrane Surface Blood, 2009, 114, 2123-2123.	1.4	O
146	The Interaction of Soluble Phospholipids with Coagulation Factor VIIa. Blood, 2010, 116, 4421-4421.	1.4	0
147	Nematode Antocoagulant Protein c2 (NAPc2) Interferes with Factor Xa Dimerization: Structural Alteration of Factor Xa Upon Dimerization Blood, 2010, 116, 1128-1128.	1.4	O
148	Modulation of Prothrombinase Assembly and Activity by Phosphatidylethanolamine. Blood, 2011, 118, 4344-4344.	1.4	0