Giulia Ramazzotti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2243417/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MiRNA-210: A Current Overview. Anticancer Research, 2017, 37, 6511-6521.	0.5	159
2	Targeting the Phosphatidylinositol 3-Kinase/Akt/Mammalian Target of Rapamycin Signaling Network in Cancer Stem Cells. Current Medicinal Chemistry, 2011, 18, 2715-2726.	1.2	109
3	Reduction of phosphoinositide-phospholipase C beta1 methylation predicts the responsiveness to azacitidine in high-risk MDS. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16811-16816.	3.3	98
4	Involvement of nuclear PLCβl in lamin B1 phosphorylation and G 2 /M cell cycle progression. FASEB Journal, 2009, 23, 957-966.	0.2	61
5	Inositide-Dependent Phospholipase C Signaling Mimics Insulin in Skeletal Muscle Differentiation by Affecting Specific Regions of the Cyclin D3 Promoter. Endocrinology, 2007, 148, 1108-1117.	1.4	53
6	Nuclear Phosphatidylinositol Signaling: Focus on Phosphatidylinositol Phosphate Kinases and Phospholipases C. Journal of Cellular Physiology, 2016, 231, 1645-1655.	2.0	48
7	Phosphoinositide-Dependent Signaling in Cancer: A Focus on Phospholipase C Isozymes. International Journal of Molecular Sciences, 2020, 21, 2581.	1.8	47
8	Nuclear inositides: PI-PLC signaling in cell growth, differentiation and pathology. Advances in Enzyme Regulation, 2009, 49, 2-10.	2.9	42
9	Nuclear translocation of PKCα isoenzyme is involved in neurogenic commitment of human neural crest-derived periodontal ligament stem cells. Cellular Signalling, 2016, 28, 1631-1641.	1.7	40
10	Catalytic activity of nuclear PLC-β1 is required for its signalling function during C2C12 differentiation. Cellular Signalling, 2008, 20, 2013-2021.	1.7	37
11	Synergistic induction of PI-PLCβ1 signaling by azacitidine and valproic acid in high-risk myelodysplastic syndromes. Leukemia, 2011, 25, 271-280.	3.3	36
12	PLC-β1 and cell differentiation: An insight into myogenesis and osteogenesis. Advances in Biological Regulation, 2017, 63, 1-5.	1.4	34
13	Nuclear Phosphoinositides: Location, Regulation and Function. Sub-Cellular Biochemistry, 2012, 59, 335-361.	1.0	34
14	Nuclear phospholipase C \hat{l}^21 signaling, epigenetics and treatments in MDS. Advances in Biological Regulation, 2013, 53, 2-7.	1.4	32
15	The physiology and pathology of inositide signaling in the nucleus. Journal of Cellular Physiology, 2011, 226, 14-20.	2.0	31
16	Nuclear inositide signaling and cell cycle. Advances in Biological Regulation, 2018, 67, 1-6.	1.4	30
17	Cancer therapy and treatments during COVID-19 era. Advances in Biological Regulation, 2020, 77, 100739.	1.4	30
18	Nuclear phospholipase C beta1 and cellular differentiation. Frontiers in Bioscience - Landmark, 2008, 13, 2452.	3.0	30

2

GIULIA RAMAZZOTTI

#	Article	IF	CITATIONS
19	The wide and growing range of lamin B-related diseases: from laminopathies to cancer. Cellular and Molecular Life Sciences, 2022, 79, 126.	2.4	29
20	Nuclear Inositide Signaling Via Phospholipase C. Journal of Cellular Biochemistry, 2017, 118, 1969-1978.	1.2	28
21	Nuclear PLCs affect insulin secretion by targeting PPARÎ ³ in pancreatic Î ² cells. FASEB Journal, 2012, 26, 203-210.	0.2	27
22	eEF1A Phosphorylation in the Nucleus of Insulin-stimulated C2C12 Myoblasts. Molecular and Cellular Proteomics, 2010, 9, 2719-2728.	2.5	26
23	An increased expression of PI-PLCβ1 is associated with myeloid differentiation and a longer response to azacitidine in myelodysplastic syndromes. Journal of Leukocyte Biology, 2015, 98, 769-780.	1.5	26
24	BMPâ€2 Induced Expression of PLCβ1 That is a Positive Regulator of Osteoblast Differentiation. Journal of Cellular Physiology, 2016, 231, 623-629.	2.0	26
25	Nuclear inositide signaling in myelodysplastic syndromes. Journal of Cellular Biochemistry, 2010, 109, 1065-1071.	1.2	25
26	Modulation of nuclear PI-PLCbeta1 during cell differentiation. Advances in Biological Regulation, 2016, 60, 1-5.	1.4	25
27	Abilities of berberine and chemically modified berberines to interact with metformin and inhibit proliferation of pancreatic cancer cells. Advances in Biological Regulation, 2019, 73, 100633.	1.4	25
28	Nuclear phospholipase C isoenzyme imbalance leads to pathologies in brain, hematologic, neuromuscular, and fertility disorders. Journal of Lipid Research, 2019, 60, 312-317.	2.0	25
29	Phosphoinositide 3 Kinase Signaling in Human Stem Cells from Reprogramming to Differentiation: A Tale in Cytoplasmic and Nuclear Compartments. International Journal of Molecular Sciences, 2019, 20, 2026.	1.8	24
30	Real-time PCR as a tool for quantitative analysis of PI-PLCbeta1 gene expression in myelodysplastic syndrome. International Journal of Molecular Medicine, 2006, 18, 267-71.	1.8	24
31	Roles of p53, NF-κB and the androgen receptor in controlling NGAL expression in prostate cancer cell lines. Advances in Biological Regulation, 2018, 69, 43-62.	1.4	21
32	Revisiting nuclear phospholipase C signalling in MDS. Advances in Biological Regulation, 2012, 52, 2-6.	1.4	20
33	PLC-beta 1 regulates the expression of miR-210 during mithramycin-mediated erythroid differentiation in K562 cells. Oncotarget, 2014, 5, 4222-4231.	0.8	19
34	Inositide signaling in the nucleus: From physiology to pathology. Advances in Enzyme Regulation, 2010, 50, 2-11.	2.9	17
35	Phospholipase C-β1 interacts with cyclin E in adipose- derived stem cells osteogenic differentiation. Advances in Biological Regulation, 2019, 71, 1-9.	1.4	17
36	A novel DAG-dependent mechanism links PKCa and Cyclin B1 regulating cell cycle progression. Oncotarget, 2014, 5, 11526-11540.	0.8	17

Giulia Ramazzotti

#	Article	IF	CITATIONS
37	Physiology and pathology of nuclear phospholipase C \hat{I}^21 . Advances in Enzyme Regulation, 2011, 51, 2-12.	2.9	16
38	Therapeutic potential of nvpâ€bkm120 in human osteosarcomas cells. Journal of Cellular Physiology, 2019, 234, 10907-10917.	2.0	16
39	Location-dependent role of phospholipase C signaling in the brain: Physiology and pathology. Advances in Biological Regulation, 2021, 79, 100771.	1.4	16
40	Nuclear Phospholipase C in Biological Control and Cancer. Critical Reviews in Eukaryotic Gene Expression, 2011, 21, 291-301.	0.4	15
41	A role for PKCÎμ during C2C12 myogenic differentiation. Cellular Signalling, 2010, 22, 629-635.	1.7	14
42	Subcellular Localization Relevance and Cancer-Associated Mechanisms of Diacylglycerol Kinases. International Journal of Molecular Sciences, 2020, 21, 5297.	1.8	14
43	Lamin A and Prelamin A Counteract Migration of Osteosarcoma Cells. Cells, 2020, 9, 774.	1.8	14
44	Impact of phospholipase C β1 in glioblastoma: a study on the main mechanisms of tumor aggressiveness. Cellular and Molecular Life Sciences, 2022, 79, 195.	2.4	12
45	Nuclear Inositides and Inositide-Dependent Signaling Pathways in Myelodysplastic Syndromes. Cells, 2020, 9, 697.	1.8	11
46	Nuclear PI-PLCβ1 and Myelodysplastic Syndromes: Genetics and Epigenetics. Current Pharmaceutical Design, 2012, 18, 1751-1754.	0.9	9
47	Abilities of β-Estradiol to interact with chemotherapeutic drugs, signal transduction inhibitors and nutraceuticals and alter the proliferation of pancreatic cancer cells. Advances in Biological Regulation, 2020, 75, 100672.	1.4	9
48	Nuclear PI-PLC β1 and Myelodysplastic Syndromes: From Bench to Clinics. Current Topics in Microbiology and Immunology, 2012, 362, 235-245.	0.7	9
49	Inositide signaling: Nuclear targets and involvement in myelodysplastic syndromes. Advances in Enzyme Regulation, 2008, 48, 2-9.	2.9	8
50	Recent advances in MDS mutation landscape: Splicing and signalling. Advances in Biological Regulation, 2020, 75, 100673.	1.4	7
51	IPMK and β-catenin mediate PLC-β1-dependent signaling in myogenic differentiation. Oncotarget, 2016, 7, 84118-84127.	0.8	7
52	Cell signaling pathways in autosomal-dominant leukodystrophyÂ(ADLD): the intriguing role of the astrocytes. Cellular and Molecular Life Sciences, 2021, 78, 2781-2795.	2.4	6
53	Real-time PCR as a tool for quantitative analysis of PI-PLCβ1 gene expression in myelodysplastic syndrome. International Journal of Molecular Medicine, 2006, 18, 267.	1.8	5
54	Inositide-Dependent Nuclear Signalling in Health and Disease. Handbook of Experimental Pharmacology, 2019, 259, 291-308.	0.9	5

GIULIA RAMAZZOTTI

#	Article	IF	CITATIONS
55	Role of PLCγ1 in the modulation of cell migration and cell invasion in glioblastoma. Advances in Biological Regulation, 2022, 83, 100838.	1.4	5
56	Genotype of inflammatory cytokines in limbal stem cell graft in Italian patients. Biochemical and Biophysical Research Communications, 2005, 332, 95-100.	1.0	3
57	Lamin B1 Accumulation's Effects on Autosomal Dominant Leukodystrophy (ADLD): Induction of Reactivity in the Astrocytes. Cells, 2021, 10, 2566.	1.8	3
58	Role of nuclear PLC and PI3K signaling in the development of cancer. Future Lipidology, 2007, 2, 303-311.	0.5	2
59	Roles of PI3K/AKT/mTOR Axis in Arteriovenous Fistula. Biomolecules, 2022, 12, 350.	1.8	2
60	Morpho-functional alterations in autosomal-dominant leukodystrophy (ADLD): The intriguing role of the astrocytes. Journal of the Neurological Sciences, 2021, 429, 118207.	0.3	0