
Chansik Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2243293/publications.pdf Version: 2024-02-01

CHANSIK HONC

#	Article	IF	CITATIONS
1	Selective Gαi Subunits as Novel Direct Activators of Transient Receptor Potential Canonical (TRPC)4 and TRPC5 Channels. Journal of Biological Chemistry, 2012, 287, 17029-17039.	3.4	85
2	Increased TRPC5 glutathionylation contributes to striatal neuron loss in Huntington's disease. Brain, 2015, 138, 3030-3047.	7.6	83
3	<i>GABBR2</i> mutations determine phenotype in rett syndrome and epileptic encephalopathy. Annals of Neurology, 2017, 82, 466-478.	5.3	66
4	The Pathophysiologic Roles of TRPM7 Channel. Korean Journal of Physiology and Pharmacology, 2014, 18, 15.	1.2	42
5	lsoform- and receptor-specific channel property of canonical transient receptor potential (TRPC)1/4 channels. Pflugers Archiv European Journal of Physiology, 2014, 466, 491-504.	2.8	32
6	The roles of G proteins in the activation of TRPC4 and TRPC5 transient receptor potential channels. Channels, 2012, 6, 333-343.	2.8	31
7	Molecular determinants of PKA-dependent inhibition of TRPC5 channel. American Journal of Physiology - Cell Physiology, 2011, 301, C823-C832.	4.6	26
8	Dynamic Modulation of the Kv2.1 Channel by Src-Dependent Tyrosine Phosphorylation. Journal of Proteome Research, 2012, 11, 1018-1026.	3.7	25
9	An essential role of PI(4,5)P2 for maintaining the activity of the transient receptor potential canonical (TRPC)4β. Pflugers Archiv European Journal of Physiology, 2013, 465, 1011-1021.	2.8	24
10	Dual action of the Gαq-PLCβ-PI(4,5)P2 pathway on TRPC1/4 and TRPC1/5 heterotetramers. Scientific Reports, 2018, 8, 12117.	3.3	24
11	The interaction domains of transient receptor potential canonical (TRPC)1/4 and TRPC1/5 heteromultimeric channels. Biochemical and Biophysical Research Communications, 2016, 474, 476-481.	2.1	22
12	TRPC5 channel instability induced by depalmitoylation protects striatal neurons against oxidative stress in Huntington's disease. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118620.	4.1	21
13	Extracellular disulfide bridges stabilize TRPC5 dimerization, trafficking, and activity. Pflugers Archiv European Journal of Physiology, 2015, 467, 703-712.	2.8	20
14	Contribution of Zinc-Dependent Delayed Calcium Influx via TRPC5 in Oxidative Neuronal Death and its Prevention by Novel TRPC Antagonist. Molecular Neurobiology, 2019, 56, 2822-2835.	4.0	20
15	TRP Channels as Emerging Therapeutic Targets for Neurodegenerative Diseases. Frontiers in Physiology, 2020, 11, 238.	2.8	19
16	TRPC1 as a negative regulator for TRPC4 and TRPC5 channels. Pflugers Archiv European Journal of Physiology, 2019, 471, 1045-1053.	2.8	18
17	Gs cascade regulates canonical transient receptor potential 5 (TRPC5) through cAMP mediated intracellular Ca2+ release and ion channel trafficking. Biochemical and Biophysical Research Communications, 2012, 421, 105-111.	2.1	15
18	Gαi-mediated TRPC4 activation by polycystin-1 contributes to endothelial function via STAT1 activation. Scientific Reports, 2018, 8, 3480.	3.3	15

CHANSIK HONG

#	Article	IF	CITATIONS
19	A novel modified RANKL variant can prevent osteoporosis by acting as a vaccine and an inhibitor. Clinical and Translational Medicine, 2021, 11, e368.	4.0	14
20	Identification of a Membrane-targeting Domain of the Transient Receptor Potential Canonical (TRPC)4 Channel Unrelated to Its Formation of a Tetrameric Structure. Journal of Biological Chemistry, 2014, 289, 34990-35002.	3.4	13
21	Reciprocal positive regulation between TRPV6 and NUMB in PTEN-deficient prostate cancer cells. Biochemical and Biophysical Research Communications, 2014, 447, 192-196.	2.1	12
22	Close spatio-association of the transient receptor potential canonical 4 (TRPC4) channel with Gα _i in TRPC4 activation process. American Journal of Physiology - Cell Physiology, 2015, 308, C879-C889.	4.6	12
23	Electrophysiological Characteristics of Six Mutations in hClC-1 of Korean Patients with Myotonia Congenita. Molecules and Cells, 2014, 37, 202-212.	2.6	10
24	ATP-sensitive K + channels maintain resting membrane potential in interstitial cells of Cajal from the mouse colon. European Journal of Pharmacology, 2017, 809, 98-104.	3.5	10
25	Regulation of Intracellular Calcium by Endoplasmic Reticulum Proteins in Small Intestinal Interstitial Cells of Cajal. Journal of Neurogastroenterology and Motility, 2018, 24, 128-137.	2.4	10
26	Structure–Function Relationship and Physiological Roles of Transient Receptor Potential Canonical (TRPC) 4 and 5 Channels. Cells, 2020, 9, 73.	4.1	10
27	Scutellaria baicalensis Georgi induces caspase-dependent apoptosis via mitogen activated protein kinase activation and the generation of reactive oxygen species signaling pathways in MCF-7 breast cancer cells. Molecular Medicine Reports, 2017, 16, 2302-2308.	2.4	9
28	Effects of Ca2+-Activated Cl- Channel ANO1inhibitors on Pacemaker Activity in Interstitial Cells of Cajal. Cellular Physiology and Biochemistry, 2018, 51, 2887-2899.	1.6	8
29	Inhibition of TRPC4 channel activity in colonic myocytes by tricyclic antidepressants disrupts colonic motility causing constipation. Journal of Cellular and Molecular Medicine, 2022, , .	3.6	5
30	Hyperpolarizationâ€activated cyclic nucleotideâ€gated channels working as pacemaker channels in colonic interstitial cells of Cajal. Journal of Cellular and Molecular Medicine, 2022, 26, 364-374.	3.6	4
31	Helix O modulates voltage dependency of CLC-1. Pflugers Archiv European Journal of Physiology, 2017, 469, 183-193.	2.8	2
32	Prostanoid EP3 receptor agonist sulprostone enhances pacemaker activity of colonic interstitial cells of Cajal. Naunyn-Schmiedeberg's Archives of Pharmacology, 2017, 390, 961-969.	3.0	2