
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2243144/publications.pdf Version: 2024-02-01

ΖΗΛΝΟΙΙΙΝ ΕΓΙ

#	Article	IF	CITATIONS
1	The genome of the cucumber, Cucumis sativus L Nature Genetics, 2009, 41, 1275-1281.	21.4	1,317
2	Genomic analyses provide insights into the history of tomato breeding. Nature Genetics, 2014, 46, 1220-1226.	21.4	801
3	iTAK: A Program for Genome-wide Prediction andÂClassification of Plant Transcription Factors, Transcriptional Regulators, and Protein Kinases. Molecular Plant, 2016, 9, 1667-1670.	8.3	735
4	The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nature Genetics, 2013, 45, 51-58.	21.4	731
5	Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nature Biotechnology, 2013, 31, 154-159.	17.5	693
6	A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nature Genetics, 2013, 45, 1510-1515.	21.4	472
7	The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nature Genetics, 2019, 51, 1044-1051.	21.4	441
8	Draft genome of the kiwifruit Actinidia chinensis. Nature Communications, 2013, 4, 2640.	12.8	423
9	The genome of the stress-tolerant wild tomato species Solanum pennellii. Nature Genetics, 2014, 46, 1034-1038.	21.4	391
10	High-Throughput Illumina Strand-Specific RNA Sequencing Library Preparation. Cold Spring Harbor Protocols, 2011, 2011, pdb.prot5652.	0.3	382
11	The Epigenome and Transcriptional Dynamics of Fruit Ripening. Annual Review of Plant Biology, 2017, 68, 61-84.	18.7	335
12	Interdependence of threonine, methionine and isoleucine metabolism in plants: accumulation and transcriptional regulation under abiotic stress. Amino Acids, 2010, 39, 933-947.	2.7	305
13	Systems Biology of Tomato Fruit Development: Combined Transcript, Protein, and Metabolite Analysis of Tomato Transcription Factor (<i>nor, rin</i>) and Ethylene Receptor (<i>Nr</i>) Mutants Reveals Novel Regulatory Interactions Â. Plant Physiology, 2011, 157, 405-425.	4.8	303
14	Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement. Nature Communications, 2017, 8, 249.	12.8	286
15	Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor <i>SIERF6</i> plays an important role in ripening and carotenoid accumulation. Plant Journal, 2012, 70, 191-204.	5.7	268
16	The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biology, 2016, 14, 110.	3.8	265
17	Karyotype Stability and Unbiased Fractionation in the Paleo-Allotetraploid Cucurbita Genomes. Molecular Plant, 2017, 10, 1293-1306.	8.3	263
18	Genome encode analyses reveal the basis of convergent evolution of fleshy fruit ripening. Nature Plants, 2018, 4, 784-791.	9.3	256

#	Article	IF	CITATIONS
19	High-resolution spatiotemporal transcriptome mapping of tomato fruit development and ripening. Nature Communications, 2018, 9, 364.	12.8	255
20	RNA-Seq improves annotation of protein-coding genes in the cucumber genome. BMC Genomics, 2011, 12, 540.	2.8	232
21	Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits. Nature Genetics, 2019, 51, 1616-1623.	21.4	226
22	ESTs, cDNA microarrays, and gene expression profiling: tools for dissecting plant physiology and development. Plant Journal, 2004, 39, 697-714.	5.7	225
23	Down-regulation of AUXIN RESPONSE FACTORS 6 and 8 by microRNA 167 leads to floral development defects and female sterility in tomato. Journal of Experimental Botany, 2014, 65, 2507-2520.	4.8	223
24	Comprehensive EST analysis of tomato and comparative genomics of fruit ripening. Plant Journal, 2004, 40, 47-59.	5.7	210
25	Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12580-12585.	7.1	208
26	Tissue- and Cell-Type Specific Transcriptome Profiling of Expanding Tomato Fruit Provides Insights into Metabolic and Regulatory Specialization and Cuticle Formation Â. Plant Cell, 2011, 23, 3893-3910.	6.6	193
27	Tomato <i>GOLDEN2-LIKE</i> Transcription Factors Reveal Molecular Gradients That Function during Fruit Development and Ripening. Plant Cell, 2014, 26, 585-601.	6.6	193
28	Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato. Journal of Experimental Botany, 2010, 61, 3563-3575.	4.8	192
29	VirusDetect: An automated pipeline for efficient virus discovery using deep sequencing of small RNAs. Virology, 2017, 500, 130-138.	2.4	191
30	Antagonistic Basic Helix-Loop-Helix/bZIP Transcription Factors Form Transcriptional Modules That Integrate Light and Reactive Oxygen Species Signaling in <i>Arabidopsis</i> Â. Plant Cell, 2013, 25, 1657-1673.	6.6	188
31	Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis. Journal of Experimental Botany, 2007, 58, 507-520.	4.8	183
32	Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement. Nature Communications, 2018, 9, 4580.	12.8	181
33	Cucurbit Genomics Database (CuGenDB): a central portal for comparative and functional genomics of cucurbit crops. Nucleic Acids Research, 2019, 47, D1128-D1136.	14.5	177
34	A â€~golden' SNP in <i>CmOr</i> governs the fruit flesh color of melon (<i><scp>C</scp>ucumis) Tj ETQq0</i>	0 0 rgBT /	Overlock 10 1 173
	A Zine Finger Drotein Degulates Flowering Time and Abietic Stress Tolerance in Chrysonthemum by		

35	A Zinc Finger Protein Regulates Flowering Time and Abiotic Stress Tolerance in Chrysanthemum by Modulating Gibberellin Biosynthesis Â. Plant Cell, 2014, 26, 2038-2054.	6.6	172
36	Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nature Genetics, 2020, 52, 1423-1432.	21.4	168

#	Article	IF	CITATIONS
37	Transcriptome sequencing and comparative analysis of cucumber flowers with different sex types. BMC Genomics, 2010, 11, 384.	2.8	161
38	Metabolic Coevolution in the Bacterial Symbiosis of Whiteflies and Related Plant Sap-Feeding Insects. Genome Biology and Evolution, 2015, 7, 2635-2647.	2.5	161
39	Plant MetGenMAP: An Integrative Analysis System for Plant Systems Biology Â. Plant Physiology, 2009, 151, 1758-1768.	4.8	156
40	Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions. Nature Communications, 2017, 8, 15275.	12.8	156
41	Impact of intestinal colonization and invasion on the Entamoeba histolytica transcriptome. Molecular and Biochemical Parasitology, 2006, 147, 163-176.	1.1	153
42	A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits. Nature Genetics, 2019, 51, 1607-1615.	21.4	153
43	The Penium margaritaceum Genome: Hallmarks of the Origins of Land Plants. Cell, 2020, 181, 1097-1111.e12.	28.9	153
44	Flavour compounds in tomato fruits: identification of loci and potential pathways affecting volatile composition. Journal of Experimental Botany, 2009, 60, 325-337.	4.8	152
45	The Transcriptome of the Baculovirus Autographa californica Multiple Nucleopolyhedrovirus in Trichoplusia ni Cells. Journal of Virology, 2013, 87, 6391-6405.	3.4	152
46	Diversification and independent domestication of Asian and European pears. Genome Biology, 2018, 19, 77.	8.8	149
47	TAL effector driven induction of a SWEET gene confers susceptibility to bacterial blight of cotton. Nature Communications, 2017, 8, 15588.	12.8	144
48	Comprehensive Tissue-Specific Transcriptome Analysis Reveals Distinct Regulatory Programs during Early Tomato Fruit Development. Plant Physiology, 2015, 168, 1684-1701.	4.8	142
49	Deep Sequencing of Small RNAs in Tomato for Virus and Viroid Identification and Strain Differentiation. PLoS ONE, 2012, 7, e37127.	2.5	138
50	Transcriptomics-based screen for genes induced by flagellin and repressed by pathogen effectors identifies a cell wall-associated kinase involved in plant immunity. Genome Biology, 2013, 14, R139.	9.6	137
51	Catalyzing plant science research with RNA-seq. Frontiers in Plant Science, 2013, 4, 66.	3.6	136
52	The Jujube Genome Provides Insights into Genome Evolution and the Domestication of Sweetness/Acidity Taste in Fruit Trees. PLoS Genetics, 2016, 12, e1006433.	3.5	136
53	A <scp>MYB</scp> / <scp>bHLH</scp> complex regulates tissueâ€specific anthocyanin biosynthesis in the inner pericarp of redâ€centered kiwifruit <i>Actinidia chinensis</i> cv. Hongyang. Plant Journal, 2019, 99, 359-378.	5.7	136
54	Deciphering genetic factors that determine melon fruitâ€quality traits using RNA â€Seqâ€based highâ€resolution QTL and eQTL mapping. Plant Journal, 2018, 94, 169-191.	5.7	133

#	Article	IF	CITATIONS
55	Graph pangenome captures missing heritability and empowers tomato breeding. Nature, 2022, 606, 527-534.	27.8	131
56	Ethylene suppresses tomato (<i>Solanum lycopersicum</i>) fruit set through modification of gibberellin metabolism. Plant Journal, 2015, 83, 237-251.	5.7	128
57	Characterization of transcriptome dynamics during watermelon fruit development: sequencing, assembly, annotation and gene expression profiles. BMC Genomics, 2011, 12, 454.	2.8	126
58	Cutin and suberin: assembly and origins of specialized lipidic cell wall scaffolds. Current Opinion in Plant Biology, 2020, 55, 11-20.	7.1	126
59	Genome-Wide Mapping of Structural Variations Reveals a Copy Number Variant That Determines Reproductive Morphology in Cucumber. Plant Cell, 2015, 27, 1595-1604.	6.6	125
60	Messenger RNA exchange between scions and rootstocks in grafted grapevines. BMC Plant Biology, 2015, 15, 251.	3.6	124
61	Vascular-mediated signalling involved in early phosphate stress response in plants. Nature Plants, 2016, 2, 16033.	9.3	124
62	An NAC Transcription Factor Controls Ethylene-Regulated Cell Expansion in Flower Petals. Plant Physiology, 2013, 163, 775-791.	4.8	122
63	iAssembler: a package for de novo assembly of Roche-454/Sanger transcriptome sequences. BMC Bioinformatics, 2011, 12, 453.	2.6	120
64	Genomic analyses of an extensive collection of wild and cultivated accessions provide new insights into peach breeding history. Genome Biology, 2019, 20, 36.	8.8	120
65	Identification of multiple salicylic acid-binding proteins using two high throughput screens. Frontiers in Plant Science, 2014, 5, 777.	3.6	119
66	Host-secreted antimicrobial peptide enforces symbiotic selectivity in <i>Medicago truncatula</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6854-6859.	7.1	119
67	Combined transcription factor profiling, microarray analysis and metabolite profiling reveals the transcriptional control of metabolic shifts occurring during tomato fruit development. Plant Journal, 2011, 68, 999-1013.	5.7	118
68	The pomegranate (<i>Punica granatum</i> L.) genome provides insights into fruit quality and ovule developmental biology. Plant Biotechnology Journal, 2018, 16, 1363-1374.	8.3	115
69	Tomato Functional Genomics Database: a comprehensive resource and analysis package for tomato functional genomics. Nucleic Acids Research, 2011, 39, D1156-D1163.	14.5	113
70	Genome Sequence of Brucella abortus Vaccine Strain S19 Compared to Virulent Strains Yields Candidate Virulence Genes. PLoS ONE, 2008, 3, e2193.	2.5	108
71	Comprehensive Transcriptome Analyses Reveal that Potato Spindle Tuber Viroid Triggers Genome-Wide Changes in Alternative Splicing, Inducible <i>trans</i> -Acting Activity of Phased Secondary Small Interfering RNAs, and Immune Responses. Journal of Virology, 2017, 91, .	3.4	107
72	Comparative Transcriptome Analysis of Cultivated and Wild Watermelon during Fruit Development. PLoS ONE, 2015, 10, e0130267.	2.5	106

#	Article	IF	CITATIONS
73	Comparative genomics reveals candidate carotenoid pathway regulators of ripening watermelon fruit. BMC Genomics, 2013, 14, 781.	2.8	103
74	Genomic Organization, Phylogenetic Comparison and Differential Expression of the SBP-Box Family Genes in Grape. PLoS ONE, 2013, 8, e59358.	2.5	102
75	The USDA cucumber (Cucumis sativus L.) collection: genetic diversity, population structure, genome-wide association studies, and core collection development. Horticulture Research, 2018, 5, 64.	6.3	102
76	Metabolism of soluble sugars in developing melon fruit: a global transcriptional view of the metabolic transition to sucrose accumulation. Plant Molecular Biology, 2011, 76, 1-18.	3.9	101
77	The bottle gourd genome provides insights into Cucurbitaceae evolution and facilitates mapping of a <i>Papaya ringâ€spot virus</i> resistance locus. Plant Journal, 2017, 92, 963-975.	5.7	101
78	Transcriptome sequencing and whole genome expression profiling of chrysanthemum under dehydration stress. BMC Genomics, 2013, 14, 662.	2.8	100
79	The PH gene determines fruit acidity and contributes to the evolution of sweet melons. Nature Communications, 2014, 5, 4026.	12.8	100
80	Root and shoot transcriptome analysis of two ecotypes of <i><scp>N</scp>occaea caerulescens</i> uncovers the role of <i><scp>N</scp>c<scp>N</scp>ramp1</i> in <scp>C</scp> d hyperaccumulation. Plant Journal, 2014, 78, 398-410.	5.7	97
81	Distinct Mechanisms of the ORANGE Protein in Controlling Carotenoid Flux. Plant Physiology, 2017, 173, 376-389.	4.8	97
82	Genome of â€ ⁻ Charleston Gray', the principal American watermelon cultivar, and genetic characterization of 1,365 accessions in the U.S. National Plant Germplasm System watermelon collection. Plant Biotechnology Journal, 2019, 17, 2246-2258.	8.3	96
83	Gene expression in developing watermelon fruit. BMC Genomics, 2008, 9, 275.	2.8	94
84	Genome-Wide Identification and Analysis of Grape Aldehyde Dehydrogenase (ALDH) Gene Superfamily. PLoS ONE, 2012, 7, e32153.	2.5	91
85	A Single Amino Acid Substitution in an ORANGE Protein Promotes Carotenoid Overaccumulation in Arabidopsis. Plant Physiology, 2015, 169, 421-431.	4.8	91
86	Comprehensive Transcriptome Profiling Reveals Long Noncoding RNA Expression and Alternative Splicing Regulation during Fruit Development and Ripening in Kiwifruit (Actinidia chinensis). Frontiers in Plant Science, 2016, 7, 335.	3.6	89
87	Genome and evolution of the arbuscular mycorrhizal fungus <i>Diversispora epigaea</i> (formerly) Tj ETQq1 1 0	.784314 r 7.3	gBT /Overloc
88	Proteomic analysis of chromoplasts from six crop species reveals insights into chromoplast function and development. Journal of Experimental Botany, 2013, 64, 949-961.	4.8	85
89	Use of RNA-seq data to identify and validate RT-qPCR reference genes for studying the tomato-Pseudomonas pathosystem. Scientific Reports, 2017, 7, 44905.	3.3	85
90	Genome of Solanum pimpinellifolium provides insights into structural variants during tomato breeding. Nature Communications, 2020, 11, 5817.	12.8	85

#	Article	IF	CITATIONS
91	A high-density genetic map for anchoring genome sequences and identifying QTLs associated with dwarf vine in pumpkin (Cucurbita maxima Duch.). BMC Genomics, 2015, 16, 1101.	2.8	84
92	Ectopic expression of <i><scp>ORANGE</scp></i> promotes carotenoid accumulation and fruit development in tomato. Plant Biotechnology Journal, 2019, 17, 33-49.	8.3	83
93	Catabolism of <scp>l</scp> –methionine in the formation of sulfur and other volatiles in melon (<i><scp>C</scp>ucumis melo</i> L.) fruit. Plant Journal, 2013, 74, 458-472.	5.7	78
94	Gibberellin-induced changes in the transcriptome of grapevine (Vitis labrusca × V. vinifera) cv. Kyoho flowers. BMC Genomics, 2015, 16, 128.	2.8	77
95	A Kelch domain-containing F-box coding gene negatively regulates flavonoid accumulation in Cucumis melo L Plant Physiology, 2015, 169, pp.01008.2015.	4.8	77
96	Transcriptional dynamics of <i>Phytophthora infestans</i> during sequential stages of hemibiotrophic infection of tomato. Molecular Plant Pathology, 2016, 17, 29-41.	4.2	77
97	An integrated peach genome structural variation map uncovers genes associated with fruit traits. Genome Biology, 2020, 21, 258.	8.8	77
98	Arabidopsis Pollen Fertility Requires the Transcription Factors CITF1 and SPL7 That Regulate Copper Delivery to Anthers and Jasmonic Acid Synthesis. Plant Cell, 2017, 29, 3012-3029.	6.6	76
99	Transcriptomic analysis reveals tomato genes whose expression is induced specifically during effector-triggered immunity and identifies the Epk1 protein kinase which is required for the host response to three bacterial effector proteins. Genome Biology, 2014, 15, 492.	8.8	75
100	Tomato Expression Database (TED): a suite of data presentation and analysis tools. Nucleic Acids Research, 2006, 34, D766-D770.	14.5	72
101	Elucidation of the Mechanisms of Long-Distance mRNA Movement in a <i>Nicotiana benthamiana</i> /Tomato Heterograft System. Plant Physiology, 2018, 177, 745-758.	4.8	72
102	Modulation of RNA Polymerase II Phosphorylation Downstream of Pathogen Perception Orchestrates Plant Immunity. Cell Host and Microbe, 2014, 16, 748-758.	11.0	70
103	Transcriptome Analysis of Mango (Mangifera indica L.) Fruit Epidermal Peel to Identify Putative Cuticle-Associated Genes. Scientific Reports, 2017, 7, 46163.	3.3	68
104	High frequency oligonucleotides: targeting active gene (HFO-TAG) markers revealed wide genetic diversity among Citrullus spp. accessions useful for enhancing disease or pest resistance in watermelon cultivars. Genetic Resources and Crop Evolution, 2013, 60, 427-440.	1.6	66
105	Exploring key cellular processes and candidate genes regulating the primary thickening growth of <scp>M</scp> oso underground shoots. New Phytologist, 2017, 214, 81-96.	7.3	66
106	Genome-wide association analysis identifies a natural variation in basic helix-loop-helix transcription factor regulating ascorbate biosynthesis via D-mannose/L-galactose pathway in tomato. PLoS Genetics, 2019, 15, e1008149.	3.5	66
107	A CLE–SUNN module regulates strigolactone content and fungal colonization in arbuscular mycorrhiza. Nature Plants, 2019, 5, 933-939.	9.3	65
108	Sequencingâ€Based Bin Map Construction of a Tomato Mapping Population, Facilitating Highâ€Resolution Quantitative Trait Loci Detection. Plant Genome, 2019, 12, 180010.	2.8	65

#	Article	IF	CITATIONS
109	Chromosome-scale genome assembly of kiwifruit <i>Actinidia eriantha</i> with single-molecule sequencing and chromatin interaction mapping. GigaScience, 2019, 8, .	6.4	65
110	Early Blood Profiles of Virus Infection in a Monkey Model for Lassa Fever. Journal of Virology, 2007, 81, 7960-7973.	3.4	64
111	The Tomato Expression Atlas. Bioinformatics, 2017, 33, 2397-2398.	4.1	64
112	Diversity, Distribution, and Evolution of Tomato Viruses in China Uncovered by Small RNA Sequencing. Journal of Virology, 2017, 91, .	3.4	63
113	Transcriptome Responses of the Host Trichoplusia ni to Infection by the Baculovirus Autographa californica Multiple Nucleopolyhedrovirus. Journal of Virology, 2014, 88, 13781-13797.	3.4	60
114	Characterization of the developmental dynamics of the elongation of a bamboo internode during the fast growth stage. Tree Physiology, 2019, 39, 1201-1214.	3.1	60
115	Comprehensive transcriptome analysis and functional characterization of PR-5 for its involvement in tomato Sw-7 resistance to tomato spotted wilt tospovirus. Scientific Reports, 2019, 9, 7673.	3.3	60
116	Genome sequence of the corn leaf aphid (<i>Rhopalosiphum maidis</i> Fitch). GigaScience, 2019, 8, .	6.4	60
117	Dissecting the molecular signatures of apical cellâ€ŧype shoot meristems from two ancient land plant lineages. New Phytologist, 2015, 207, 893-904.	7.3	59
118	Maternal Inheritance of a Single Somatic Animal Cell Displayed by the Bacteriocyte in the Whitefly Bemisia tabaci. Current Biology, 2018, 28, 459-465.e3.	3.9	59
119	Quantitative trait loci and differential gene expression analyses reveal the genetic basis for negatively associated β-carotene and starch content in hexaploid sweetpotato [Ipomoea batatas (L.) Lam.]. Theoretical and Applied Genetics, 2020, 133, 23-36.	3.6	59
120	Graph-based pan-genome reveals structural and sequence variations related to agronomic traits and domestication in cucumber. Nature Communications, 2022, 13, 682.	12.8	59
121	A bulk segregant transcriptome analysis reveals metabolic and cellular processes associated with Orange allelic variation and fruit β-carotene accumulation in melon fruit. BMC Plant Biology, 2015, 15, 274.	3.6	58
122	A dynamic evolutionary and functional landscape of plant phased small interfering RNAs. BMC Biology, 2015, 13, 32.	3.8	57
123	Unravelling the Genetic Diversity among Cassava Bemisia tabaci Whiteflies Using NextRAD Sequencing. Genome Biology and Evolution, 2017, 9, 2958-2973.	2.5	57
124	A cost-effective method for Illumina small RNA-Seq library preparation using T4 RNA ligase 1 adenylated adapters. Plant Methods, 2012, 8, 41.	4.3	56
125	Complete Genome Sequence of a New Tobamovirus Naturally Infecting Tomatoes in Mexico. Genome Announcements, 2013, 1, .	0.8	56
126	<i>Rosa hybrida</i> Rh <scp>ERF</scp> 1 and Rh <scp>ERF</scp> 4 mediate ethylene―and auxinâ€regulated petal abscission by influencing pectin degradation. Plant Journal, 2019, 99, 1159-1171.	5.7	56

#	Article	IF	CITATIONS
127	Analysis of the tomato leaf transcriptome during successive hemibiotrophic stages of a compatible interaction with the oomycete pathogen <i>Phytophthora infestans</i> . Molecular Plant Pathology, 2016, 17, 42-54.	4.2	55
128	Regulatory control of high levels of carotenoid accumulation in potato tubers. Plant, Cell and Environment, 2011, 34, 1020-1030.	5.7	52
129	Fastq_clean: An optimized pipeline to clean the Illumina sequencing data with quality control. , 2014, ,		51
130	Lossâ€ofâ€function mutation of the calcium sensor <scp>CBL</scp> 1 increases aluminum sensitivity in <i>Arabidopsis</i> . New Phytologist, 2017, 214, 830-841.	7.3	50
131	Rapid growth of Moso bamboo (<i>Phyllostachys edulis</i>): Cellular roadmaps, transcriptome dynamics, and environmental factors. Plant Cell, 2022, 34, 3577-3610.	6.6	50
132	Analysis of expressed sequence tags generated from full-length enriched cDNA libraries of melon. BMC Genomics, 2011, 12, 252.	2.8	49
133	Transcriptome analysis of the whitefly, Bemisia tabaci MEAM1 during feeding on tomato infected with the crinivirus, Tomato chlorosis virus, identifies a temporal shift in gene expression and differential regulation of novel orphan genes. BMC Genomics, 2017, 18, 370.	2.8	49
134	Comparative transcriptome analysis reveals networks of genes activated in the whitefly, Bemisia tabaci when fed on tomato plants infected with Tomato yellow leaf curl virus. Virology, 2018, 513, 52-64.	2.4	48
135	Genome of the African cassava whitefly Bemisia tabaci and distribution and genetic diversity of cassava-colonizing whiteflies in Africa. Insect Biochemistry and Molecular Biology, 2019, 110, 112-120.	2.7	47
136	Tomato stigma exsertion induced by high temperature is associated with the jasmonate signalling pathway. Plant, Cell and Environment, 2019, 42, 1205-1221.	5.7	47
137	A highâ€quality chromosomeâ€level genome assembly of a generalist herbivore, <i>Trichoplusia ni</i> . Molecular Ecology Resources, 2019, 19, 485-496.	4.8	47
138	Kiwifruit Genome Database (KGD): a comprehensive resource for kiwifruit genomics. Horticulture Research, 2020, 7, 117.	6.3	47
139	Unraveling a genetic roadmap for improved taste in the domesticated apple. Molecular Plant, 2021, 14, 1454-1471.	8.3	47
140	Manipulation of ZDS in tomato exposes carotenoid―and ABAâ€specific effects on fruit development and ripening. Plant Biotechnology Journal, 2020, 18, 2210-2224.	8.3	44
141	Genome-wide association studies provide insights into the genetic determination of fruit traits of pear. Nature Communications, 2021, 12, 1144.	12.8	44
142	Transcriptome Profiling of Petal Abscission Zone and Functional Analysis of an Aux/IAA Family Gene RhIAA16 Involved in Petal Shedding in Rose. Frontiers in Plant Science, 2016, 7, 1375.	3.6	43
143	Auxin Regulates Sucrose Transport to Repress Petal Abscission in Rose (<i>Rosa hybrida</i>). Plant Cell, 2020, 32, 3485-3499.	6.6	43
144	Ethylene-regulated asymmetric growth of the petal base promotes flower opening in rose (<i>Rosa) Tj ETQq0 C</i>	0 rgBT /Ov	erlogk 10 Tf 5

#	Article	IF	CITATIONS
145	Identification and expression profiling of microRNAs involved in the stigma exsertion under high-temperature stress in tomato. BMC Genomics, 2017, 18, 843.	2.8	42
146	Cellular and molecular characterizations of a slow-growth variant provide insights into the fast growth of bamboo. Tree Physiology, 2018, 38, 641-654.	3.1	42
147	Methylation of <i>MdMYB1</i> locus mediated by RdDM pathway regulates anthocyanin biosynthesis in apple. Plant Biotechnology Journal, 2020, 18, 1736-1748.	8.3	42
148	De novo and comparative transcriptome analysis of cultivated and wild spinach. Scientific Reports, 2016, 5, 17706.	3.3	41
149	Differential metabolism of L–phenylalanine in the formation of aromatic volatiles in melon (Cucumis) Tj ETQq1	1 0.78431 2.9	4 rgBT /Ove
150	Genome sequencing sheds light on the contribution of structural variants to Brassica oleracea diversification. BMC Biology, 2021, 19, 93.	3.8	41
151	A tomato LATERAL ORGAN BOUNDARIES transcription factor, <i>SILOB1</i> , predominantly regulates cell wall and softening components of ripening. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	41
152	Genetic association of ETHYLENE-INSENSITIVE3-like sequence with the sex-determining M locus in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics, 2008, 117, 927-933.	3.6	39
153	Transcriptome analyses of seed development in grape hybrids reveals a possible mechanism influencing seed size. BMC Genomics, 2016, 17, 898.	2.8	39
154	Insights into the Mechanisms Underlying Ultraviolet-C Induced Resveratrol Metabolism in Grapevine (V. amurensis Rupr.) cv. "Tonghua-3― Frontiers in Plant Science, 2016, 7, 503.	3.6	38
155	Mutation of ABC transporter ABCA2 confers resistance to Bt toxin Cry2Ab in Trichoplusia ni. Insect Biochemistry and Molecular Biology, 2019, 112, 103209.	2.7	38
156	Plant IncRNAs are enriched in and move systemically through the phloem in response to phosphate deficiency. Journal of Integrative Plant Biology, 2019, 61, 492-508.	8.5	37
157	A chromosome-level genome of a Kordofan melon illuminates the origin of domesticated watermelons. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	37
158	Molecular characterization and transcriptome analysis of orange head Chinese cabbage (Brassica) Tj ETQq0 0 0 rg	gBT /Overl 3.2	ock 10 Tf 50
159	Genetic Resources and Vulnerabilities of Major Cucurbit Crops. Genes, 2021, 12, 1222.	2.4	36
160	Identification of a Solanum pennellii Chromosome 4 Fruit Flavor and Nutritional Quality-Associated Metabolite QTL. Frontiers in Plant Science, 2016, 7, 1671.	3.6	35
161	Transcriptome-based identification and validation of reference genes for plant-bacteria interaction studies using Nicotiana benthamiana. Scientific Reports, 2019, 9, 1632.	3.3	34
162	Genomic analyses provide insights into spinach domestication and the genetic basis of agronomic traits. Nature Communications, 2021, 12, 7246.	12.8	34

#	Article	IF	CITATIONS
163	Using Small RNA Deep Sequencing Data to Detect Human Viruses. BioMed Research International, 2016, 2016, 1-9.	1.9	33
164	RadishBase: A Database for Genomics and Genetics of Radish. Plant and Cell Physiology, 2013, 54, e3-e3.	3.1	32
165	Candidate gene selection and detailed morphological evaluations of <i>fs8.1</i> , a quantitative trait locus controlling tomato fruit shape. Journal of Experimental Botany, 2015, 66, 6471-6482.	4.8	32
166	Localization shift of a sugar transporter contributes to phloem unloading in sweet watermelons. New Phytologist, 2020, 227, 1858-1871.	7.3	32
167	A systems genetics approach reveals PbrNSC as a regulator of lignin and cellulose biosynthesis in stone cells of pear fruit. Genome Biology, 2021, 22, 313.	8.8	32
168	Incomplete transfer of accessory loci influencing <i><scp>S</scp>b<scp>MATE</scp></i> expression underlies genetic background effects for aluminum tolerance in sorghum. Plant Journal, 2013, 73, 276-288.	5.7	31
169	Identification of miRNAs and their targets through high-throughput sequencing and degradome analysis in male and female Asparagus officinalis. BMC Plant Biology, 2016, 16, 80.	3.6	31
170	Transcriptomic and functional analysis of cucumber (<i>Cucumis sativus</i> L.) fruit phloem during early development. Plant Journal, 2018, 96, 982-996.	5.7	30
171	SpinachBase: a central portal for spinach genomics. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	3.0	30
172	Morphological dissection and cellular and transcriptome characterizations of bamboo pith cavity formation reveal a pivotal role of genes related to programmed cell death. Plant Biotechnology Journal, 2019, 17, 982-997.	8.3	30
173	Genomic analyses provide insights into peach local adaptation and responses to climate change. Genome Research, 2021, 31, 592-606.	5.5	30
174	Spelling Changes and Fluorescent Tagging With Prime Editing Vectors for Plants. Frontiers in Genome Editing, 2021, 3, 617553.	5.2	30
175	Comparative Transcriptomes Analysis of Red- and White-Fleshed Apples in an F1 Population of Malus sieversii f. niedzwetzkyana Crossed with M. domestica â€ [~] Fuji'. PLoS ONE, 2015, 10, e0133468.	2.5	29
176	Suppressing Sorbitol Synthesis Substantially Alters the Global Expression Profile of Stress Response Genes in Apple (<i>Malus domestica</i>) Leaves. Plant and Cell Physiology, 2015, 56, 1748-1761.	3.1	29
177	Cellular and molecular characterization of a thick-walled variant reveal a pivotal role of shoot apical meristem in transverse development of bamboo culm. Journal of Experimental Botany, 2019, 70, 3911-3926.	4.8	29
178	Transcriptome analysis provides insights into the regulation of metabolic processes during postharvest cold storage of loquat (Eriobotrya japonica) fruit. Horticulture Research, 2019, 6, 49.	6.3	29
179	Molecular and Biological Characterization of <i>Tomato mottle mosaic virus</i> and Development of RT-PCR Detection. Plant Disease, 2017, 101, 704-711.	1.4	28
180	PIF4 negatively modulates cold tolerance in tomato anthers via temperature-dependent regulation of tapetal cell death. Plant Cell, 2021, 33, 2320-2339.	6.6	27

#	Article	IF	CITATIONS
181	Integrated single-base resolution maps of transcriptome, sRNAome and methylome of Tomato yellow leaf curl virus (TYLCV) in tomato. Scientific Reports, 2019, 9, 2863.	3.3	26

182 Transcriptome analysis of ectopic chloroplast development in green curd cauliflower (Brassica) Tj ETQq0 0 0 rgBT / $\frac{25}{25}$ Tf 50 702

183	Transcriptome profiling and methyl homeostasis of an Arabidopsis mutant deficient in S-adenosylhomocysteine hydrolase1 (SAHH1). Plant Molecular Biology, 2012, 79, 315-331.	3.9	25
184	Estimation of the Whitefly Bemisia tabaci Genome Size Based on k-mer and Flow Cytometric Analyses. Insects, 2015, 6, 704-715.	2.2	23
185	Transcriptome characterization of three wild Chinese Vitis uncovers a large number of distinct disease related genes. BMC Genomics, 2015, 16, 223.	2.8	23
186	Combined nature and human selections reshaped peach fruit metabolome. Genome Biology, 2022, 23, .	8.8	23
187	The Tomato Kinase Pti1 Contributes to Production of Reactive Oxygen Species in Response to Two Flagellin-Derived Peptides and Promotes Resistance to <i>Pseudomonas syringae</i> Infection. Molecular Plant-Microbe Interactions, 2017, 30, 725-738.	2.6	22
188	Using Small RNA-seq Data to Detect siRNA Duplexes Induced by Plant Viruses. Genes, 2017, 8, 163.	2.4	22
189	The genome and transcriptome analysis of snake gourd provide insights into its evolution and fruit development and ripening. Horticulture Research, 2020, 7, 199.	6.3	22
190	Identification of Conserved Gene-Regulatory Networks that Integrate Environmental Sensing and Growth in the Root Cambium. Current Biology, 2020, 30, 2887-2900.e7.	3.9	22
191	Comparative transcriptome analyses shed light on carotenoid production and plastid development in melon fruit. Horticulture Research, 2021, 8, 112.	6.3	22
192	Comprehensive transcriptome analyses reveal tomato plant responses to tobacco rattle virus-based gene silencing vectors. Scientific Reports, 2017, 7, 9771.	3.3	21
193	Global Analysis of Baculovirus Autographa californica Multiple Nucleopolyhedrovirus Gene Expression in the Midgut of the Lepidopteran Host Trichoplusia ni. Journal of Virology, 2018, 92, .	3.4	21
194	Chromosomeâ€level genome assembly of the greenhouse whitefly (<i>Trialeurodes vaporariorum</i>) Tj ETQq0	00.rgBT / 4.8	Overlock 10
195	Identification of Differentially Expressed Genes Associated with Apple Fruit Ripening and Softening by Suppression Subtractive Hybridization. PLoS ONE, 2015, 10, e0146061.	2.5	21
196	Plant Genome Editing Database (PGED): A Call for Submission of Information about Genome-Edited Plant Mutants. Molecular Plant, 2019, 12, 127-129.	8.3	20
197	The tomato HIGH PIGMENT1/DAMAGED DNA BINDING PROTEIN 1 gene contributes to regulation of fruit ripening. Horticulture Research, 2019, 6, 15.	6.3	20
198	Transcriptional Responses of the <i>Trichoplusia ni</i> Midgut to Oral Infection by the Baculovirus Autographa californica Multiple Nucleopolyhedrovirus. Journal of Virology, 2019, 93, .	3.4	20

#	Article	IF	CITATIONS
199	Differential gene regulatory pathways and co-expression networks associated with fire blight infection in apple (Malus × domestica). Horticulture Research, 2019, 6, 35.	6.3	20
200	QTL associated with gummy stem blight resistance in watermelon. Theoretical and Applied Genetics, 2021, 134, 573-584.	3.6	20
201	QTL mapping of resistance to Fusarium oxysporum f. sp. niveum race 2 and Papaya ringspot virus in Citrullus amarus. Theoretical and Applied Genetics, 2020, 133, 677-687.	3.6	18
202	Genome-wide association study reveals the genetic architecture of 27 agronomic traits in tomato. Plant Physiology, 2021, 186, 2078-2092.	4.8	18
203	Characterization of Erysiphe necator-Responsive Genes in Chinese Wild Vitis quinquangularis. International Journal of Molecular Sciences, 2012, 13, 11497-11519.	4.1	16
204	Comprehensive analysis of expressed sequence tags from cultivated and wild radish (Raphanus spp.). BMC Genomics, 2013, 14, 721.	2.8	16
205	Complete Genome Sequence of Southern tomato virus Identified in China Using Next-Generation Sequencing. Genome Announcements, 2015, 3, .	0.8	16
206	Plant Viruses Transmitted in Two Different Modes Produce Differing Effects on Small RNA-Mediated Processes in Their Aphid Vector. Phytobiomes Journal, 2019, 3, 71-81.	2.7	16
207	Natural Genetic Diversity in Tomato Flavor Genes. Frontiers in Plant Science, 2021, 12, 642828.	3.6	16
208	A <i>Solanum lycopersicoides</i> reference genome facilitates insights into tomato specialized metabolism and immunity. Plant Journal, 2022, 110, 1791-1810.	5.7	16
209	Genomic insights into the origin, adaptive evolution, and herbicide resistance of Leptochloa chinensis, a devastating tetraploid weedy grass in rice fields. Molecular Plant, 2022, 15, 1045-1058.	8.3	15
210	Generation of a de novo transcriptome from equine lamellar tissue. BMC Genomics, 2015, 16, 739.	2.8	14
211	Kiwifruit Information Resource (KIR): a comparative platform for kiwifruit genomics. Database: the Journal of Biological Databases and Curation, 2015, 2015, bav113.	3.0	14
212	First Complete Genome Sequence of an Emerging Cucumber Green Mottle Mosaic Virus Isolate in North America. Genome Announcements, 2015, 3, .	0.8	14
213	GWAS Based on RNA-Seq SNPs and High-Throughput Phenotyping Combined with Climatic Data Highlights the Reservoir of Valuable Genetic Diversity in Regional Tomato Landraces. Genes, 2020, 11, 1387.	2.4	14
214	Transcriptome analysis provides insights into the responses of sweet potato to sweet potato virus disease (SPVD). Virus Research, 2021, 295, 198293.	2.2	14
215	Computational identification of condition-specific miRNA targets based on gene expression profiles and sequence information. BMC Bioinformatics, 2009, 10, S34.	2.6	13
216	Complete Genome Sequence of a Novel Genotype of Squash Mosaic Virus Infecting Squash in Spain. Genome Announcements, 2015, 3, .	0.8	13

#	Article	IF	CITATIONS
217	Complete Genome Sequence of Dickeya dianthicola ME23, a Pathogen Causing Blackleg and Soft Rot Diseases of Potato. Microbiology Resource Announcements, 2019, 8, .	0.6	13
218	Assembly of whole-chromosome pseudomolecules for polyploid plant genomes using outbred mapping populations. Nature Genetics, 2020, 52, 1256-1264.	21.4	13
219	Complete Genome Sequence of <i>Southern tomato virus</i> Naturally Infecting Tomatoes in Bangladesh. Genome Announcements, 2015, 3, .	0.8	12
220	QTL and Transcriptomic Analyses Implicate Cuticle Transcription Factor SHINE as a Source of Natural Variation for Epidermal Traits in Cucumber Fruit. Frontiers in Plant Science, 2019, 10, 1536.	3.6	12
221	Genetic mapping of green curd gene Gr in cauliflower. Theoretical and Applied Genetics, 2020, 133, 353-364.	3.6	12
222	A key †foxy' aroma gene is regulated by homology-induced promoter indels in the iconic juice grape †Concord'. Horticulture Research, 2020, 7, 67.	6.3	12
223	Genetic characterization of melon accessions in the U.S. National Plant Germplasm System and construction of a melon core collection. Molecular Horticulture, 2021, 1, .	5.8	12
224	High-frequency Oligonucleotides in Watermelon Expressed Sequenced Tag-unigenes Are Useful in Producing Polymorphic Polymerase Chain Reaction Markers among Watermelon Genotypes. Journal of the American Society for Horticultural Science, 2010, 135, 369-378.	1.0	11
225	Complete Genome Sequence of a Tomato-Infecting Tomato Mottle Mosaic Virus in New York. Genome Announcements, 2015, 3, .	0.8	10
226	Differences in gene expression in whitefly associated with CYSDV-infected and virus-free melon, and comparison with expression in whiteflies fed on ToCV- and TYLCV-infected tomato. BMC Genomics, 2019, 20, 654.	2.8	10
227	Cellular and molecular characterizations of the irregular internode division zone formation of a slow-growing bamboo variant. Tree Physiology, 2022, 42, 570-584.	3.1	10
228	Bt Cry1Ac resistance in Trichoplusia ni is conferred by multi-gene mutations. Insect Biochemistry and Molecular Biology, 2022, 140, 103678.	2.7	10
229	A novel method of transcriptome interpretation reveals a quantitative suppressive effect on tomato immune signaling by two domains in a single pathogen effector protein. BMC Genomics, 2016, 17, 229.	2.8	9
230	Construction of genetic linkage map using genotyping-by-sequencing and identification of QTLs associated with leaf color in spinach. Euphytica, 2018, 214, 1.	1.2	9
231	KASP Genotyping as a Molecular Tool for Diagnosis of Cassava-Colonizing Bemisia tabaci. Insects, 2020, 11, 305.	2.2	9
232	Complete Genome Sequence of an Emerging Genotype of Tobacco Streak Virus in the United States. Genome Announcements, 2014, 2, .	0.8	8
233	Molecular and biological properties of tomato necrotic stunt virus and development of a sensitive real-time RT-PCR assay. Archives of Virology, 2014, 159, 353-358.	2.1	8
234	Genome-wide profiling of piRNAs in the whitefly Bemisia tabaci reveals cluster distribution and association with begomovirus transmission. PLoS ONE, 2019, 14, e0213149.	2.5	7

#	Article	IF	CITATIONS
235	Comparative transcriptome profiling of Chinese wild grapes provides insights into powdery mildew resistance. Phytopathology, 2021, , PHYTO01210006R.	2.2	7
236	The tomato yellow leaf curl virus C4 protein alters the expression of plant developmental genes correlating to leaf upward cupping phenotype in tomato. PLoS ONE, 2022, 17, e0257936.	2.5	7
237	Loss of function of the bHLH transcription factor Nrd1 in tomato enhances resistance to <i>Pseudomonas syringae</i> . Plant Physiology, 2022, 190, 1334-1348.	4.8	7
238	The complete mitochondrial genome sequence of spinach, <i>Spinacia oleracea</i> L. Mitochondrial DNA Part B: Resources, 2017, 2, 339-340.	0.4	5
239	Citrullus lanatus. Trends in Genetics, 2020, 36, 456-457.	6.7	5
240	Complete Genome Sequence of an Emerging Melon Necrotic Spot Virus Isolate Infecting Greenhouse Cucumber in North America. Genome Announcements, 2015, 3, .	0.8	4
241	Deep Sequencing of Small RNAs in the Whitefly Bemisia tabaci Reveals Novel MicroRNAs Potentially Associated with Begomovirus Acquisition and Transmission. Insects, 2020, 11, 562.	2.2	4
242	Chromosome-scale genome assemblies of wild tomato relatives <i>Solanum habrochaites</i> and <i>Solanum galapagense</i> reveal structural variants associated with stress tolerance and terpene biosynthesis. Horticulture Research, 2022, 9, .	6.3	4
243	Identification of Phloem Mobile mRNAs Using the Solanaceae Heterograft System. Methods in Molecular Biology, 2019, 2014, 421-431.	0.9	3
244	Interspecific Recombination Between Zucchini Tigre Mosaic Virus and Papaya Ringspot Virus Infecting Cucurbits in China. Frontiers in Microbiology, 2021, 12, 773992.	3.5	3
245	Databases and Bioinformatics for Cucurbit Species. Plant Genetics and Genomics: Crops and Models, 2016, , 253-267.	0.3	2
246	Setaria viridis chlorotic and seedlingâ€lethal mutants define critical functions for chloroplast gene expression. Plant Journal, 2020, 104, 917-931.	5.7	2
247	Dynamically expressed small <scp>RNAs</scp> , substantially driven by genomic structural variants, contribute to transcriptomic changes during tomato domestication. Plant Journal, 2022, 110, 1536-1550.	5.7	1